Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. 2006

Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
The Prostate Center at Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.

Progression to androgen independence is the lethal end stage of prostate cancer. We used expression of androgen receptor (AR)-targeted short hairpin RNAs (shRNA) to directly test the requirement for AR in ligand-independent activation of androgen-regulated genes and hormone-independent tumor progression. Transient transfection of LNCaP human prostate cancer cells showed that AR shRNA decreased R1881 induction of the prostate-specific antigen (PSA)-luciferase reporter by 96%, whereas activation by forskolin, interleukin-6, or epidermal growth factor was inhibited 48% to 75%. Whereas the antiandrogen bicalutamide provided no further suppression, treatment with the mitogen-activated protein kinase (MAPK) inhibitor U0126 completely abrogated the residual activity, indicating a MAPK-dependent, AR-independent pathway for regulating the PSA promoter. Expression of doxycycline-inducible AR shRNA expression in LNCaP cells resulted in decreased levels of AR and PSA as well as reduced proliferation in vitro. When these cells were grown as xenografts in immunocompromised mice, induction of AR shRNA decreased serum PSA to below castration nadir levels and significantly retarded tumor growth over the entire 55-day experimental period. This is the first demonstration that, by inducibly suppressing AR expression in vivo, there is an extensive delay in progression to androgen independence as well as a dramatic inhibition of tumor growth and decrease in serum PSA, which exceeds that seen with castration alone. Based on these findings, we propose that suppressing AR expression may provide superior therapeutic benefit in reducing tumor growth rate than castration and may additionally be very effective in delaying progression to androgen independence.

UI MeSH Term Description Entries
D008297 Male Males
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D017430 Prostate-Specific Antigen A glycoprotein that is a kallikrein-like serine proteinase and an esterase, produced by epithelial cells of both normal and malignant prostate tissue. It is an important marker for the diagnosis of prostate cancer. Kallikrein hK3,gamma-Seminoprotein,hK3 Kallikrein,Prostate Specific Antigen,Semenogelase,Seminin,Kallikrein, hK3,gamma Seminoprotein
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
October 2010, Neoplasia (New York, N.Y.),
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
May 2016, Nihon rinsho. Japanese journal of clinical medicine,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
September 1998, European journal of biochemistry,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
April 2012, Molecular and cellular endocrinology,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
January 2010, Methods in molecular biology (Clifton, N.J.),
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
January 2013, PloS one,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
February 2011, Molecular cancer therapeutics,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
June 2012, International journal of cancer,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
February 2009, BMC microbiology,
Helen Cheng, and Rob Snoek, and Fariba Ghaidi, and Michael E Cox, and Paul S Rennie
May 2024, bioRxiv : the preprint server for biology,
Copied contents to your clipboard!