Two regions of the mouse mammary tumor virus long terminal repeat regulate the activity of its promoter in mammary cell lines. 1991

P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
Hormone Action and Oncogenesis Section, National Cancer Institute Bethesda, Maryland 20892.

In vivo expression of the mouse mammary tumor virus (MMTV) is restricted to a few organs, with the highest rate of transcription found in the mammary gland. Using a series of mammary and nonmammary murine cell lines, we have identified two regulatory elements, located upstream of the hormone responsive element, that specifically regulate the MMTV promoter. The first element displays an enhancerlike activity and is coincident with the binding of a nuclear factor (designated MP4; position -1078 to -1052 in the long terminal repeat) whose presence is apparently restricted to mammary cell lines. The second regulatory region mediates a repressive activity and is mapped to the long terminal repeat segment from -415 to -483. This repression is specific for a particular subtype of mammary cells (RAC cells) able to grow under two differentiation states (A. Sonnenberg, H. Daams, J. Calafat, and J. Hilgers, Cancer Res. 46:5913-5922, 1986). The MMTV promoter in mammary cell lines thus appears to be modulated by two cis-acting elements that are likely to be involved in tissue-specific expression in vivo.

UI MeSH Term Description Entries
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009710 Nucleotide Mapping Two-dimensional separation and analysis of nucleotides. Fingerprints, Nucleotide,Fingerprint, Nucleotide,Mapping, Nucleotide,Mappings, Nucleotide,Nucleotide Fingerprint,Nucleotide Fingerprints,Nucleotide Mappings
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies

Related Publications

P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
November 2007, Journal of virology,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
February 1994, Molecular and cellular biology,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
August 1997, The Journal of biological chemistry,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
August 1986, Molecular and cellular biology,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
August 1983, Gene,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
June 2004, Cancer research,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
September 1995, Molecular endocrinology (Baltimore, Md.),
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
December 1988, Journal of virology,
P Lefebvre, and D S Berard, and M G Cordingley, and G L Hager
January 1999, Journal of virology,
Copied contents to your clipboard!