Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. 2007

Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
Institut de Virologie Moléculaire et Structurale, FRE 2854 CNRS-UJF, BP 181, 38042 Grenoble cedex 9, France.

Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.

UI MeSH Term Description Entries
D009975 Orthomyxoviridae A family of RNA viruses causing INFLUENZA and other respiratory diseases. Orthomyxoviridae includes INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; INFLUENZAVIRUS D; ISAVIRUS; and THOGOTOVIRUS. Influenza Viruses,Myxoviruses,Orthomyxoviruses,Influenza Virus,Myxovirus,Orthomyxovirus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D017361 Viral Nonstructural Proteins Proteins encoded by a VIRAL GENOME that are not structural components of VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY. Nonstructural Proteins, Viral,NS Proteins, Viral,Viral NS Proteins,Viral Non-Structural Proteins,Viral Nonstructural Protein,Viral Nonstructural Proteins NS1,Viral Nonstructural Proteins NS2,Nonstructural Protein, Viral,Viral Non Structural Proteins
D021581 Active Transport, Cell Nucleus Gated transport mechanisms by which proteins or RNA are moved across the NUCLEAR MEMBRANE. Nuclear Export,Nuclear Import,Nuclear Transport,Nucleocytoplasmic Transport,Nucleo-cytoplasmic Transport,Export, Nuclear,Import, Nuclear,Nucleo cytoplasmic Transport,Transport, Nuclear,Transport, Nucleo-cytoplasmic,Transport, Nucleocytoplasmic,Transports, Nucleo-cytoplasmic

Related Publications

Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
September 2001, Virus research,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
June 2015, Journal of virology,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
February 1992, Molecular and cellular biology,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
July 1980, The Journal of cell biology,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
July 2020, Proceedings of the National Academy of Sciences of the United States of America,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
January 2006, Nature,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
December 1988, Microbiologia (Madrid, Spain),
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
January 1990, Molecular biology reports,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
January 2012, Nature communications,
Sébastien Boulo, and Hatice Akarsu, and Rob W H Ruigrok, and Florence Baudin
July 2021, Communications biology,
Copied contents to your clipboard!