Effects of growth medium and cyclic AMP analogues on the cAMP-induced differentiation of F9 teratocarcinoma cells. 1991

B Goldstein, and H Kindregan, and R M Niles
Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118.

F9 teratocarcinoma cells differentiate into parietal endodermlike cells when treated with retinoic acid (RA) and cyclic AMP (cAMP). We have previously found that F9 cells can be induced to differentiate by treatment with cAMP in the absence of RA. In the course of determining why other investigators had failed to observe cAMP-induced differentiation, we found that the growth medium played an important role in determining the response of F9 cells to differentiating agents. When F9 cells were grown in minimal essential medium (MEM) and treated with either 8-bromo-cAMP (8BrcA) + 1-methyl, 3-isobutylxanthine (MIX), or dibutyryl cAMP (DBcA) + theophylline (T), they differentiated to parietal endodermlike cells without any requirement for exogenous RA. However, when F9 cells were grown in Dulbecco's modified Eagle's medium (DME), DBcA/T failed to induce differentiation alone and required exogenous RA to induce formation of parietal endoderm-like cells. 8BrcA/MIX alone was still able to induce some differentiation, although the extent was not as great as those cells grown in MEM. These results could not be explained by the different growth-promoting properties of the two culture media because there was no difference in the doubling time of F9 cells grown in either medium. Likewise, RA and cAMP both inhibited growth to the same extent in either medium. Inasmuch as almost all published reports on F9 cell differentiation have used DME as a growth medium, and RA with or without DBcA/T as the differentiating agents, these studies would not have had the appropriate conditions to detect the cAMP-induced differentiation of F9 cells.

UI MeSH Term Description Entries
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013724 Teratoma A true neoplasm composed of a number of different types of tissue, none of which is native to the area in which it occurs. It is composed of tissues that are derived from three germinal layers, the endoderm, mesoderm, and ectoderm. They are classified histologically as mature (benign) or immature (malignant). (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1642) Dysembryoma,Teratoid Tumor,Teratoma, Cystic,Teratoma, Mature,Teratoma, Benign,Teratoma, Immature,Teratoma, Malignant,Benign Teratoma,Benign Teratomas,Dysembryomas,Immature Teratoma,Immature Teratomas,Malignant Teratoma,Malignant Teratomas,Teratoid Tumors,Teratomas,Teratomas, Benign,Teratomas, Immature,Teratomas, Malignant,Tumor, Teratoid,Tumors, Teratoid

Related Publications

B Goldstein, and H Kindregan, and R M Niles
May 1986, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
B Goldstein, and H Kindregan, and R M Niles
November 1995, Biological & pharmaceutical bulletin,
B Goldstein, and H Kindregan, and R M Niles
January 1983, Nature,
B Goldstein, and H Kindregan, and R M Niles
October 1984, Developmental biology,
B Goldstein, and H Kindregan, and R M Niles
April 1987, The Journal of biological chemistry,
B Goldstein, and H Kindregan, and R M Niles
May 1987, Molecular and cellular biology,
B Goldstein, and H Kindregan, and R M Niles
May 1994, International journal of radiation biology,
Copied contents to your clipboard!