Polypeptide composition of cell membranes from chick embryo fibroblasts transformed by rous sarcoma virus. 1975

D J Marciani, and J P Bader

Chick embryo fibroblasts were transformed by the Bryan high-titer strain of Rous sarcoma virus (RSV-BH), or a mutant (RSV-BH-Ta) inducing temperature-dependent transformation. Surface membranes from normal and transformed cells were isolated as membrane vesicles by differential centrifugation, and as cell ghosts after ZnCl2 treatment and separation in an aqueous two-phase system. These preparations were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or phenol/urea/acetic acid. In general a greater resolution of individual bands was found in gels containing phenol/urea/acetic acid, which separates polypeptides on the bases of size and charge. Electrophoresis of preparations from nontransformed cells showed that two polypeptides (molecular weights 200 000 and 250 000) found in cell ghosts were missing in membrane vesicles. In cell ghosts, transformation by RSV-BH resulted in a significant decrease of the 250 000 molecular weight complex. Also a polypeptide (molecular weight 73 000) prominent in membrane vesicles from nontransformed cells was decreased in transformed cells. Surfaces from cells transformed by RSV-BH-Ta at 37 degrees C presented patterns similar to those for RSV-BH infected cells. Shifting these cells to 41 degrees C resulted in an increase in the 250 000 molecular weight complex, although the amount of this protein(s) never reached that found in noninfected cells. Inhibitors of RNA and protein synthesis failed to block the morphological changes occurring in RSV-BH-Ta cells after temperature shifts from 41 degrees C to 37 degrees C or vice-versa. The same inhibitors caused a reduction in the levels of the 250 000 molecular weight complex at both temperatures. These data indicate that these large membrane-associated polypeptides play little or no role in the morphological changes associated with transformation and its reversal.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D J Marciani, and J P Bader
August 1981, The Journal of biological chemistry,
D J Marciani, and J P Bader
August 1968, Cancer research,
D J Marciani, and J P Bader
March 1973, Proceedings of the National Academy of Sciences of the United States of America,
D J Marciani, and J P Bader
September 1977, Biochemical and biophysical research communications,
D J Marciani, and J P Bader
August 1978, The Journal of biological chemistry,
D J Marciani, and J P Bader
September 1973, Nature: New biology,
Copied contents to your clipboard!