On the mechanism of action of cholera toxin on isolated rat adrenocortical cells. Comparison with the effects of adrenocorticotropin on steroidogenesis and cyclic AMP output. 1975

J W Palfreyman, and D Schulster

The effects of cholera toxin on isolated rat adrenocortical cells have been investigated. Both steroid and cyclic AMP output from adrenal cells were increased by the toxin in a dose dependent fashion. The concentration of toxin for half maximal stimulation for both of these responses was about 40 ng/ml. Maximal steroidogenesis and cyclic AMP output was obtained with similar concentrations of the toxin. A correlation was observed between the low amounts of cyclic AMP produced in response to all doses of cholera toxin and to physiologically significant concentrations of adrenocorticotropin (ACTH) (less than 0.1 munit/ml; i.e. submaximal for steroidogenesis in this system). This was in direct contrast to the much higher levels of cyclic AMP generated by concentrations of ACTH greater than 1 munits/ml. Time course studies demonstrated a time-lag between toxin addition and steroid response of at least 40 min. Binding of cholera toxin to adrenal cells was rapid and was 90% complete within 15 min at both 37 and 0 degrees C. These data indicate that most of the delay in response to cholera toxin is due to processes subsequent to the initial binding interaction. Following the initial delay the subsequent maximal rate of steroidogenesis brought about by cholera toxin was very similar to that obtained with a concentration of ACTH that was maximal for steroidogenesis. Significant increases in cyclic AMP levels were detected about 20 min before increased steroidogenesis was apparent. Possible explanations for this result are considered. The results presented indicate great potential use for cholera toxin in the study of adrenal steroidogenic control mechanisms, particularly at the level of receptor mechanisms and the role of cyclic AMP.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013256 Steroids A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed) Steroid,Catatoxic Steroids,Steroids, Catatoxic
D014118 Toxins, Biological Specific, characterizable, poisonous chemicals, often PROTEINS, with specific biological properties, including immunogenicity, produced by microbes, higher plants (PLANTS, TOXIC), or ANIMALS. Biological Toxins

Related Publications

J W Palfreyman, and D Schulster
January 1990, Japanese journal of pharmacology,
J W Palfreyman, and D Schulster
October 1978, Journal of steroid biochemistry,
J W Palfreyman, and D Schulster
March 1975, Kidney international,
J W Palfreyman, and D Schulster
February 1975, Kidney international,
J W Palfreyman, and D Schulster
January 1985, Journal of cyclic nucleotide and protein phosphorylation research,
J W Palfreyman, and D Schulster
October 1970, Biochemical and biophysical research communications,
Copied contents to your clipboard!