Toll-like receptors in human infectious diseases. 2006

S de la Barrera, and M Alemán, and M del C Sasiain
Departamento de Inmunología, Instituto de Investigaciones Hematológicas (IIHema), Academia Nacional de Medicina, Buenos Aires, Argentina.

Toll-like receptors (TLRs) have emerged as critical players in immunity. They are capable of sensing organisms ranging from protozoa to bacteria, fungi or viruses upon detection of the pathogen as well as recognizing endogenous ligands, and triggering transduction pathways. Following activation of the innate immune system, strong inflammatory signals are generated inducing inflammation and activation of the adaptive immune response. However, the deregulation of TLRs signaling pathways may be conducive to the pathogenesis of many infectious diseases. Therefore, innate and adaptive immunity are not simply sequential and complementary mechanisms of resistance to pathogen, they regulate each other through cellular contacts and the secretion of soluble mediators. Herein, we summarize recent findings on TLRs signaling in infectious diseases and how pathogens have developed strategies to evade these pathways. In this context, a potential modulation of the innate immune response could have therapeutic benefit through the development of new drugs as well as vaccination strategies to be employed in infectious diseases.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D003141 Communicable Diseases An illness caused by an infectious agent or its toxins that occurs through the direct or indirect transmission of the infectious agent or its products from an infected individual or via an animal, vector or the inanimate environment to a susceptible animal or human host. Infectious Diseases,Communicable Disease,Disease, Communicable,Disease, Infectious,Diseases, Communicable,Diseases, Infectious,Infectious Disease
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051193 Toll-Like Receptors A family of pattern recognition receptors characterized by an extracellular leucine-rich domain and a cytoplasmic domain that share homology with the INTERLEUKIN 1 RECEPTOR and the DROSOPHILA toll protein. Following pathogen recognition, toll-like receptors recruit and activate a variety of SIGNAL TRANSDUCING ADAPTOR PROTEINS. Receptors, Toll-Like,Toll-Like Receptor,Receptor, Toll-Like,Receptors, Toll Like,Toll Like Receptor,Toll Like Receptors

Related Publications

S de la Barrera, and M Alemán, and M del C Sasiain
December 2010, Frontiers of medicine in China,
S de la Barrera, and M Alemán, and M del C Sasiain
August 2003, Current opinion in pharmacology,
S de la Barrera, and M Alemán, and M del C Sasiain
January 2009, Allergologia et immunopathologia,
S de la Barrera, and M Alemán, and M del C Sasiain
October 2011, International immunopharmacology,
S de la Barrera, and M Alemán, and M del C Sasiain
October 2003, Cardiovascular research,
S de la Barrera, and M Alemán, and M del C Sasiain
January 2012, Digestive diseases (Basel, Switzerland),
S de la Barrera, and M Alemán, and M del C Sasiain
January 2009, Advances in experimental medicine and biology,
S de la Barrera, and M Alemán, and M del C Sasiain
April 2018, ACS medicinal chemistry letters,
S de la Barrera, and M Alemán, and M del C Sasiain
May 2015, Clinical and experimental immunology,
S de la Barrera, and M Alemán, and M del C Sasiain
January 2009, Arthritis research & therapy,
Copied contents to your clipboard!