Abnormal electrophoretic mobility of a creatine kinase MM isoenzyme. 1975

K Velletri, and W C Griffiths, and I Diamond

UI MeSH Term Description Entries
D007122 Immunoelectrophoresis A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004588 Electrophoresis, Cellulose Acetate Electrophoresis in which cellulose acetate is the diffusion medium. Cellulose Acetate Electrophoreses,Cellulose Acetate Electrophoresis,Electrophoreses, Cellulose Acetate
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

K Velletri, and W C Griffiths, and I Diamond
October 1983, Clinical biochemistry,
K Velletri, and W C Griffiths, and I Diamond
January 1994, Journal of clinical laboratory analysis,
K Velletri, and W C Griffiths, and I Diamond
August 1985, Clinical chemistry,
K Velletri, and W C Griffiths, and I Diamond
March 1980, Clinical chemistry,
K Velletri, and W C Griffiths, and I Diamond
October 1976, Clinical chemistry,
K Velletri, and W C Griffiths, and I Diamond
March 1978, Clinical chemistry,
K Velletri, and W C Griffiths, and I Diamond
June 1993, Chinese medical journal,
K Velletri, and W C Griffiths, and I Diamond
January 1989, Electrophoresis,
K Velletri, and W C Griffiths, and I Diamond
May 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!