Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. 1991

D X Sun, and P Setlow
Department of Biochemistry, University of Connecticut Health Center, Farmington 06030.

L-Aspartase was purified from Bacillus subtilis, its N-terminal amino acid sequence was determined to construct a probe for the aspartase gene, and the gene (termed ansB) was cloned and sequenced. A second gene (termed ansA) was found upstream of the ansB gene and coded for L-asparaginase. These two genes were in an operon designated the ans operon, which is 80% cotransformed with the previously mapped aspH1 mutation at 215 degrees. Primer extension analysis of in vivo ans mRNA revealed two transcription start sites, depending on the growth medium. In wild-type cells in log-phase growth in 2x YT medium (tryptone-yeast extract rich medium), the ans transcript began at -67 relative to the translation start site, while cells in log-phase growth or sporulating (t1 to t4) in 2x SG medium (glucose nutrient broth-based moderately rich medium) had an ans transcript which began at -73. The level of the -67 transcript was greatly increased in an aspH mutant grown in 2x YT medium; the -67 transcript also predominated when this mutant was grown in 2x SG medium, although the -73 transcript was also present. In vitro transcription of the ans operon by RNA polymerase from log-phase cells grown in 2x YT medium and log-phase or sporulating cells grown in 2x SG medium yielded only the -67 transcript. Depending on the growth medium, the levels of asparaginase and aspartase were from 2- to 40-fold higher in an aspH mutant than in wild-type cells, and evidence was obtained indicating that the gene defined by the aspH1 mutation codes for a trans-acting transcriptional regulatory factor. In wild-type cells grown in 2x SG medium, the levels of both aspartase and asparaginase decreased significantly by t0 of sporulation but then showed a small increase, which was mirrored by changes in the level of beta-galactosidase from an ansB-lacZ fusion. The increase in the activities of ans operon enzymes between t2 and t5 of sporulation was found primarily in the forespore, and the great majority of the increased was found in the mature spore. However, throughout sporulation the only ans transcript detected was the -73 form, and no sporulation-specific RNA polymerase tested yielded a -73 transcript in vitro.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001215 Asparaginase A hydrolase enzyme that converts L-asparagine and water to L-aspartate and NH3. EC 3.5.1.1. Asparaginase II,Asparaginase medac,Asparagine Deaminase,Colaspase,Crasnitin,Elspar,Erwinase,Kidrolase,Leunase,Paronal,Deaminase, Asparagine,medac, Asparaginase

Related Publications

D X Sun, and P Setlow
February 1986, Journal of general microbiology,
D X Sun, and P Setlow
November 1994, Journal of bacteriology,
D X Sun, and P Setlow
September 1989, Molecular microbiology,
D X Sun, and P Setlow
September 1987, Journal of general microbiology,
Copied contents to your clipboard!