Expression of transferrin mRNA in the CNS of normal and jimpy mice. 1991

W P Bartlett, and X S Li, and J R Connor
Department of Neuroscience and Anatomy, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey 17033.

Both the iron mobilization protein transferrin and iron itself are found predominantly in oligodendrocytes in the brain and consequently have been hypothesized to have a role in myelination. This study is designed to begin to understand the mechanism(s) that control the expression of transferrin at the gene level in the nervous system using a hypomyelinating murine mutant (jimpy mouse). With this animal model it is possible to determine if transferrin gene expression in the nervous system is dependent on the presence of a mature oligodendrocytic population. The results demonstrate that normally expression of the transferrin gene increases from postnatal day 5 to 22-25 and then levels off in the adult. In the jimpy mouse, the relative amount of transferrin gene expression is less than that of littermate controls at 5 days of age. Furthermore, transferrin gene expression does not increase with age beyond the level observed at postnatal day 5 in the jimpy mouse. It is concluded from this study that the majority of the transferrin mRNA in the mouse brain is expressed by and/or requires the presence of a mature oligodendrocytic population.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008816 Mice, Jimpy Myelin-deficient mutants which are from the inbred Tabby-Jimpy strain. Jimpy Mice
D009185 Myelin Proteins MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure. Myelin Protein,Protein, Myelin,Proteins, Myelin
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014168 Transferrin An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states. Siderophilin,Isotransferrin,Monoferric Transferrins,Serotransferrin,Transferrin B,Transferrin C,beta 2-Transferrin,beta-1 Metal-Binding Globulin,tau-Transferrin,Globulin, beta-1 Metal-Binding,Metal-Binding Globulin, beta-1,Transferrins, Monoferric,beta 1 Metal Binding Globulin,beta 2 Transferrin,tau Transferrin
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

W P Bartlett, and X S Li, and J R Connor
March 1976, Cell and tissue research,
W P Bartlett, and X S Li, and J R Connor
January 1993, Journal of molecular neuroscience : MN,
W P Bartlett, and X S Li, and J R Connor
August 1988, Journal of neurochemistry,
W P Bartlett, and X S Li, and J R Connor
January 1977, Neuroscience,
W P Bartlett, and X S Li, and J R Connor
January 2002, Developmental neuroscience,
W P Bartlett, and X S Li, and J R Connor
November 1986, Molecular and cellular biology,
W P Bartlett, and X S Li, and J R Connor
February 1988, Journal of molecular biology,
W P Bartlett, and X S Li, and J R Connor
August 1994, Neurochemical research,
W P Bartlett, and X S Li, and J R Connor
August 1988, Journal of neurocytology,
W P Bartlett, and X S Li, and J R Connor
December 1969, Archives of biochemistry and biophysics,
Copied contents to your clipboard!