Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co-localization of glutamate, substance P and calcitonin-gene related peptide. 1991

A Merighi, and J M Polak, and D T Theodosis
Dipartimento de Morfofisiologia Veterinaria, University of Turin, Italy.

Antisera raised against the fixation products of L-glutamate and L-aspartate were used, singly or in combination, to study the ultrastructural localization of the amino acids in the rat dorsal horn, with post-embedding immunogold techniques. Immunostaining for each of the amino acids was also combined with immunolocalization of GABA, an important inhibitory neurotransmitter in the spinal cord, or synaptophysin, a synaptic vesicle glycoprotein. In addition, we examined the localization of glutamate immunoreactivity in relation to that of calcitonin-gene related peptide and substance P, two neuropeptides present in high concentrations in the dorsal horn. Glutamate- and aspartate-immunoreactive neuronal cell bodies, dendrites, axons and terminals were apparent in the first three laminae of the dorsal horn. In somatic and dendritic profiles, the immunolabel was present over the general cytoplasm and mitochondria; in the terminals, it was found over small, agranular vesicles, mitochondria and, at times, synaptic densities. Quantitative estimation indicated that the colloidal gold density in the glutamate-immunoreactive terminals was five-fold more than in any other neuronal profile. Both glutamate- and aspartate-immunopositive terminals made asymmetric synaptic contacts onto unlabelled dendrites; glutamate-positive terminals often formed the core of type I and II glomeruli. After double labelling of the same sections, glutamate and aspartate immunoreactivities consistently occurred in different axonal and terminal profiles. In these preparations, it was clearly seen that glutamate-immunoreactive terminals were far more numerous than (more than 10-fold) those immunoreactive for aspartate. Double labelling for glutamate or aspartate and GABA also revealed distinct staining of different terminals. Simultaneous immunolocalization of each of the amino acids and synaptophysin showed the amino acid and glycoprotein immunoreactivities co-localized in small, agranular vesicles in immunoreactive terminals. Finally, triple labelling of the same sections for glutamate, calcitonin gene-related peptide and substance P revealed that glutamate was often co-localized with either of the two neuropeptides in the same axonal boutons; terminals that showed simultaneous labelling for glutamate, calcitonin gene-related peptide and substance P were also noted. In all cases, the glutamate immunoreactivity was restricted to small, clear vesicles whereas the neuropeptide immunoreactivities were present in larger, dense-cored vesicles. Our observations demonstrate that there is an abundant glutamate immunoreactivity in the superficial layers of the rat dorsal horn, localized in neuronal profiles distinct from those containing aspartate or GABA.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Merighi, and J M Polak, and D T Theodosis
June 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Merighi, and J M Polak, and D T Theodosis
January 1991, Acta oto-laryngologica. Supplementum,
A Merighi, and J M Polak, and D T Theodosis
July 1995, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!