Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. 1991

P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
Ludwig Institute for Cancer Research, London, United Kingdom.

Studies on cell lines have greatly improved our understanding of many important biological questions. Generation of cell lines is facilitated by the introduction of immortalizing oncogenes into cell types of interest. One gene known to immortalize many different cell types in vitro encodes the simian virus 40 (SV40) large tumor (T) antigen (TAg). To circumvent the need for gene insertion in vitro to generate cell lines, we created transgenic mice harboring the SV40 TAg gene. Since previous studies have shown that TAg expression in transgenic mice is associated with tumorigenesis and aberrant development, we utilized a thermolabile TAg [from a SV40 strain, tsA58, temperature sensitive (ts) for transformation] to reduce the levels of functional TAg present in vivo. To direct expression to a broad range of tissues, we used the mouse major histocompatibility complex H-2Kb promoter, which is both widely active and can be further induced by interferons. tsA58 TAg mRNA was expressed in tissues of all animals harboring the hybrid construct. Development of all tissues was macroscopically normal except for thymus, which consistently showed hyperplasia. Fibroblast and cytokeratin+ thymic epithelial cultures from these mice were readily established without undergoing crisis and were conditionally immortal in their growth; the degree of conditionality was correlated with the levels of tsA58 TAg detected. One strain of H-2Kb-tsA58 mice has been bred through several generations to homozygosity and transmits a functional copy of the transgene.

UI MeSH Term Description Entries
D006965 Hyperplasia An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells. Hyperplasias
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
January 1996, Connective tissue research,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
March 2002, In vitro cellular & developmental biology. Animal,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
January 1999, Methods in molecular biology (Clifton, N.J.),
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
June 1996, Journal of cellular physiology,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
February 1997, Biochimica et biophysica acta,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
October 1994, Neuroreport,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
May 1999, Biology of reproduction,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
August 1996, Biochemical Society transactions,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
October 1997, In vitro cellular & developmental biology. Animal,
P S Jat, and M D Noble, and P Ataliotis, and Y Tanaka, and N Yannoutsos, and L Larsen, and D Kioussis
June 1996, Experimental cell research,
Copied contents to your clipboard!