Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells. 1991

M Kamermans, and B W van Dijk, and H Spekreijse
Laboratory of Medical Physics, University of Amsterdam, The Netherlands.

The spectral and dynamic properties of cone-driven horizontal cells in carp retina were evaluated with silent substitution stimuli and/or saturating background illumination. The aim of this study was to describe the wiring underlying the spectral sensitivity of these cells. We will present electrophysiological data that indicate that all cone-driven horizontal cell types receive input from all spectral cone types, and we will present evidence that all cone-driven horizontal cell types feedback to all spectral cone types. These two findings are the basis for a model for the spectral and dynamic behavior of all cone-driven horizontal cells in carp retina. The model can account for the spectral as well as the dynamic behavior of the horizontal cells. It will be shown that the strength of the feedforward and feedback pathways between a horizontal cell and a particular spectral cone type are roughly proportional. This model is in sharp contrast to the Stell model, where the spectral behavior of the three horizontal cell types is explained by a cascade of feedforward and feedback pathways between cones and horizontal cells. The Stell model accounts for the spectral but not for the dynamic behavior of the horizontal cells.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D003116 Color The visually perceived property of objects created by absorption or reflection of specific wavelengths of light. Colors
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Kamermans, and B W van Dijk, and H Spekreijse
January 2003, Progress in retinal and eye research,
M Kamermans, and B W van Dijk, and H Spekreijse
December 1997, Sheng li xue bao : [Acta physiologica Sinica],
M Kamermans, and B W van Dijk, and H Spekreijse
February 1996, Science (New York, N.Y.),
M Kamermans, and B W van Dijk, and H Spekreijse
January 2003, Visual neuroscience,
M Kamermans, and B W van Dijk, and H Spekreijse
February 2000, Brain research,
M Kamermans, and B W van Dijk, and H Spekreijse
January 1982, The Japanese journal of physiology,
M Kamermans, and B W van Dijk, and H Spekreijse
January 2006, Neuro-Signals,
M Kamermans, and B W van Dijk, and H Spekreijse
January 1982, The Japanese journal of physiology,
M Kamermans, and B W van Dijk, and H Spekreijse
January 1984, Vision research,
M Kamermans, and B W van Dijk, and H Spekreijse
February 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!