New developments in the drug treatment of glaucoma. 1991

L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
University of South Florida, Tampa.

This article reviews standard treatment modalities for patients with glaucoma and describes 3 classes of drugs which are undergoing development: apraclonidine (aplonidine, ALO 2145), an alpha 2-adrenergic agonist which has been released for clinical use; topical carbonic anhydrase inhibitors, a modification of the systemic carbonic anhydrase inhibitors currently in use; and prostaglandins (PGs), a new class of drugs with topical ocular hypotensive activity. Standard treatment modalities include parasympathomimetic agents such as pilocarpine, carbachol, and phospholine iodide, which lower intraocular pressure (IOP) by increasing aqueous outflow through the trabecular meshwork. A newer form of pilocarpine as a gel produces a longer action. Adrenergic agonist medications, such as epinephrine (adrenaline) and its prodrug dipivefrine (dipivalyl epinephrine), function by increasing uveoscleral outflow and trabecular outflow facility. A decrease in aqueous formation by the ciliary processes is thought to be the mechanism of action of beta-adrenoceptor antagonists, but the physiological basis for this action has not been clearly demonstrated. A newer beta-blocker, betaxolol, has relatively selective beta 1-blocking activity. Carbonic anhydrase inhibitors are nonbacteriostatic sulphonamide derivatives which decrease aqueous formation by the ciliary body. Almost 50% of patients taking these medications are unable to tolerate them because of their adverse effects, and there is thus much interest in the development of a topical carbonic anhydrase inhibitor with the potential for fewer adverse effects. MK 507 is the most recent and most potent compound in the series of topically active carbonic anhydrase inhibitors. Apraclonidine hydrochloride is a derivative of clonidine hydrochloride, an alpha 2-adrenergic agonist. Clonidine has previously been shown to lower IOP significantly, but has the potential to produce marked lowering of both systolic and diastolic blood pressures. Its major ocular effect appears to be a decrease in aqueous production. The structural modification to apraclonidine decreases corneal absorption and the drug's ability to cross the blood-brain barrier, minimising the risk of centrally mediated cardiovascular side effects. Apraclonidine may also influence secondary avenues of aqueous outflow, such as uveoscleral outflow, and may also affect conjunctival and episcleral vascular flow. It produces a mean decrease in IOP of 25% for as long as 12 hours. Adverse effects include blanching of the conjunctiva, minimal mydriasis and eyelid retraction. This drug has been approved in the US for use in prevention of elevated IOP after argon laser trabeculoplasty and iridotomy, and has potential uses in preventing an IOP rise after YAG laser posterior capsulotomy and cataract surgery in patients already on other antiglaucomatous medications.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D002257 Carbonic Anhydrase Inhibitors A class of compounds that reduces the secretion of H+ ions by the proximal kidney tubule through inhibition of CARBONIC ANHYDRASES. Carbonate Dehydratase Inhibitor,Carbonate Dehydratase Inhibitors,Carbonic Anhydrase Inhibitor,Carboxyanhydrase Inhibitor,Carboxyanhydrase Inhibitors,Anhydrase Inhibitor, Carbonic,Dehydratase Inhibitor, Carbonate,Inhibitor, Carbonate Dehydratase,Inhibitor, Carbonic Anhydrase,Inhibitor, Carboxyanhydrase,Inhibitors, Carbonate Dehydratase,Inhibitors, Carbonic Anhydrase,Inhibitors, Carboxyanhydrase
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D005901 Glaucoma An ocular disease, occurring in many forms, having as its primary characteristics an unstable or a sustained increase in the intraocular pressure which the eye cannot withstand without damage to its structure or impairment of its function. The consequences of the increased pressure may be manifested in a variety of symptoms, depending upon type and severity, such as excavation of the optic disk, hardness of the eyeball, corneal anesthesia, reduced visual acuity, seeing of colored halos around lights, disturbed dark adaptation, visual field defects, and headaches. (Dictionary of Visual Science, 4th ed) Glaucomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic

Related Publications

L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
February 1992, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
October 2009, Archivos de la Sociedad Espanola de Oftalmologia,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
July 1938, The British journal of ophthalmology,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
January 2006, Clinical and experimental hypertension (New York, N.Y. : 1993),
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
January 2011, Cardiology journal,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
June 1947, Journal of the American Veterinary Medical Association,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
April 1992, Current opinion in ophthalmology,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
October 1996, Drugs,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
January 2003, Eksperimental'naia i klinicheskaia farmakologiia,
L M Hurvitz, and P L Kaufman, and A L Robin, and R N Weinreb, and K Crawford, and B Shaw
March 1978, Ophthalmology,
Copied contents to your clipboard!