Effects of pressure and anesthetics on conduction and synaptic transmission. 1975

J J Kendig, and J R Trudell, and E N Cohen

The antagonism observed between pressure and anesthesia in intact animals suggests that pressure antagonism may be a promising criterion for identifying the effects of anesthetics which are important to loss of responsiveness. It is therefore of interest to compare the effects of pressure and anesthesia on conduction and on synaptic transmission, which have often been proposed as possible alternative cellular sites of anesthesia. The model used in this study is the isolated rat superior cervical ganglion. Helium pressure (35-103 atm) antagonized partial conduction block of the preganglionic nerve by halothane(0.5 and 1 mM). Helium pressure failed to antagonize the depressant effects of halothane (0.25-0.5 mM) on nicotinic transmission and of halothane or methoxyflurane (0.24 mM) on muscarinic transmission in the ganglion. Pressure itself severely depressed synaptic transmission and added to the depressant effects of the anesthetics. Conduction block as a possible cellular mechanism of anesthesia therefore meets the proposed criterion of pressure reversibility. In contrast, pressure does not antagonize anesthetic depression of excitatory synaptic transmission in the rat superior cervical ganglion.

UI MeSH Term Description Entries
D008297 Male Males
D008733 Methoxyflurane An inhalation anesthetic. Currently, methoxyflurane is rarely used for surgical, obstetric, or dental anesthesia. If so employed, it should be administered with NITROUS OXIDE to achieve a relatively light level of anesthesia, and a neuromuscular blocking agent given concurrently to obtain the desired degree of muscular relaxation. (From AMA Drug Evaluations Annual, 1994, p180) Methofluranum,Anecotan,Penthrane,Pentrane
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic

Related Publications

J J Kendig, and J R Trudell, and E N Cohen
January 2020, Current neuropharmacology,
J J Kendig, and J R Trudell, and E N Cohen
January 2022, Current neuropharmacology,
J J Kendig, and J R Trudell, and E N Cohen
December 1952, Journal of cellular and comparative physiology,
J J Kendig, and J R Trudell, and E N Cohen
January 1972, Brain research,
J J Kendig, and J R Trudell, and E N Cohen
February 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J J Kendig, and J R Trudell, and E N Cohen
January 1975, Journal of neuroscience research,
J J Kendig, and J R Trudell, and E N Cohen
August 1980, American journal of physical medicine,
J J Kendig, and J R Trudell, and E N Cohen
October 1989, Anesthesiology,
J J Kendig, and J R Trudell, and E N Cohen
September 1992, Comparative biochemistry and physiology. Comparative physiology,
Copied contents to your clipboard!