Self-assembly of DNA-coded nanoclusters. 2006

Nicholas A Licata, and Alexei V Tkachenko
Department of Physics and Michigan Center for Theoretical Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, USA.

We present a theoretical discussion of a self-assembly scheme which makes it possible to use DNA to uniquely encode the composition and structure of microparticle and nanoparticle clusters. These anisotropic DNA-decorated clusters can be further used as building blocks for hierarchical self-assembly of larger structures. We address several important aspects of possible experimental implementation of the proposed scheme: the competition between different types of clusters in a solution, possible jamming in an unwanted configuration, and the degeneracy due to symmetry with respect to particle permutations.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D003102 Colloids Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other. Hydrocolloids,Colloid,Hydrocolloid
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D049329 Nanostructures Materials which have structured components with at least one dimension in the range of 1 to 100 nanometers. These include NANOCOMPOSITES; NANOPARTICLES; NANOTUBES; and NANOWIRES. Nanomaterials,Nanostructured Materials,Material, Nanostructured,Materials, Nanostructured,Nanomaterial,Nanostructure,Nanostructured Material

Related Publications

Nicholas A Licata, and Alexei V Tkachenko
November 2011, Nano letters,
Nicholas A Licata, and Alexei V Tkachenko
May 2023, Angewandte Chemie (International ed. in English),
Nicholas A Licata, and Alexei V Tkachenko
July 2020, Angewandte Chemie (International ed. in English),
Nicholas A Licata, and Alexei V Tkachenko
September 2023, Nanomaterials (Basel, Switzerland),
Nicholas A Licata, and Alexei V Tkachenko
December 2015, ACS nano,
Nicholas A Licata, and Alexei V Tkachenko
December 2022, Journal of the American Chemical Society,
Nicholas A Licata, and Alexei V Tkachenko
October 2009, Chemical communications (Cambridge, England),
Nicholas A Licata, and Alexei V Tkachenko
October 2018, Chemical communications (Cambridge, England),
Nicholas A Licata, and Alexei V Tkachenko
April 2019, International journal of molecular sciences,
Nicholas A Licata, and Alexei V Tkachenko
August 2014, Chemical communications (Cambridge, England),
Copied contents to your clipboard!