Acetylcholine Ca2+ stores refilling directly involves a dihydropyridine-sensitive channel in dog trachea. 1991

J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.

Repetitive stimulation of the smooth muscle with acetylcholine (ACh) in the continuous presence of nifedipine resulted in a progressive decrease in the developed tension. This was associated with a decrease in the content of the agonist-sensitive intracellular Ca2+ stores. Agonist-sensitive internal Ca2+ stores appeared to be readily depleted by successive or prolonged agonist stimulation in Ca(2+)-free medium. The refilling of the empty stores when the muscle is at rest required extracellular Ca2+, was decreased by nifedipine, and was increased by BAY K 8644 and by increased external Ca2+ concentration. Refilling of stores during ACh stimulation in Ca(2+)-containing medium was decreased by nifedipine and by cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, and was potentiated by BAY K 8644. BAY K 8644 reversed the inhibitory effect of CPA on stores Ca2+ refilling. Ryanodine in normal Krebs increased muscle resting tension, an effect not observed in Ca(2+)-free medium, blocked by nifedipine and enhanced by BAY K 8644. We propose that the refilling of ACh-sensitive internal Ca2+ stores involves two distinct pathways, one dependent on the uptake of cytosolic Ca2+ via a CPA-sensitive SR Ca(2+)-adenosinetriphosphatase, and the other pathway dependent on extracellular Ca2+ influx via a dihydropyridine-sensitive Ca2+ channel and is CPA insensitive. The refilling pathway between plasmalemma and SR may involve a plasmalemma L-type Ca2+ channel (dihydropyridine sensitive) and the SR Ca2+ release channel (ryanodine sensitive).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005260 Female Females

Related Publications

J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
September 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
May 1996, The Journal of pharmacology and experimental therapeutics,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
June 2017, The Journal of cell biology,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
September 1990, Biochemical and biophysical research communications,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
December 1995, Brain research,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
March 1996, Canadian journal of physiology and pharmacology,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
January 1994, Nature,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
April 1993, The American journal of physiology,
J P Bourreau, and A P Abela, and C Y Kwan, and E E Daniel
January 1994, Journal of vascular research,
Copied contents to your clipboard!