Crystallins in the eye: Function and pathology. 2007

Usha P Andley
Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA. andley@vision.wustl.edu

Crystallins are the predominant structural proteins in the lens that are evolutionarily related to stress proteins. They were first discovered outside the vertebrate eye lens by Bhat and colleagues in 1989 who found alphaB-crystallin expression in the retina, heart, skeletal muscles, skin, brain and other tissues. With the advent of microarray and proteome analysis, there is a clearer demonstration that crystallins are prominent proteins both in the normal retina and in retinal pathologies, emphasizing the importance of understanding crystallin functions outside of the lens. There are two main crystallin gene families: alpha-crystallins, and betagamma-crystallins. alpha-crystallins are molecular chaperones that prevent aberrant protein interactions. The chaperone properties of alpha-crystallin are thought to allow the lens to tolerate aging-induced deterioration of the lens proteins without showing signs of cataracts until older age. alpha-crystallins not only possess chaperone-like activity in vitro, but can also remodel and protect the cytoskeleton, inhibit apoptosis, and enhance the resistance of cells to stress. Recent advances in the field of structure-function relationships of alpha-crystallins have provided the first clues to their underlying roles in tissues outside the lens. Proteins of the betagamma-crystallin family have been suggested to affect lens development, and are also expressed in tissues outside the lens. The goal of this paper is to highlight recent work with lens epithelial cells from alphaA- and alphaB-crystallin knockout mice. The use of lens epithelial cells suggests that crystallins have important cellular functions in the lens epithelium and not just the lens fiber cells as previously thought. These studies may be directly relevant to understanding the general cellular functions of crystallins.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D002386 Cataract Partial or complete opacity on or in the lens or capsule of one or both eyes, impairing vision or causing blindness. The many kinds of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). (Dorland, 27th ed) Cataract, Membranous,Lens Opacities,Pseudoaphakia,Cataracts,Cataracts, Membranous,Lens Opacity,Membranous Cataract,Membranous Cataracts,Opacities, Lens,Opacity, Lens,Pseudoaphakias
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Usha P Andley
April 2020, Accounts of chemical research,
Usha P Andley
November 1983, European journal of biochemistry,
Usha P Andley
January 2016, Biochimica et biophysica acta,
Usha P Andley
September 1997, Nature structural biology,
Usha P Andley
January 1982, Advances in experimental medicine and biology,
Usha P Andley
February 1989, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
Usha P Andley
September 1989, Trends in biochemical sciences,
Usha P Andley
January 1986, Journal of molecular evolution,
Usha P Andley
July 2014, Progress in biophysics and molecular biology,
Usha P Andley
November 1972, Acta morphologica Neerlando-Scandinavica,
Copied contents to your clipboard!