Modeling oxidative stress in the central nervous system. 2006

Maria K Lehtinen, and Azad Bonni
Department of Pathology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.

Oxidative stress is associated with the onset and pathogenesis of several prominent central nervous system disorders. Consequently, there is a pressing need for experimental methods for studying neuronal responses to oxidative stress. A number of techniques for modeling oxidative stress have been developed, including the use of inhibitors of the mitochondrial respiratory chain, depletion of endogenous antioxidants, application of products of lipid peroxidation, use of heavy metals, and models of ischemic brain injury. These experimental approaches can be applied from cell culture to in vivo animal models. Their use has provided insight into the molecular underpinnings of oxidative stress responses in the nervous system, including cell recovery and cell death. Reactive oxygen species contribute to conformational change-induced activation of signaling pathways, inactivation of enzymes through modification of catalytic cysteine residues, and subcellular redistribution of signaling molecules. In this review, we will discuss several methods for inducing oxidative stress in the nervous system and explore newly emerging concepts in oxidative stress signaling.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D019636 Neurodegenerative Diseases Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures. Degenerative Diseases, Nervous System,Degenerative Diseases, Central Nervous System,Degenerative Diseases, Neurologic,Degenerative Diseases, Spinal Cord,Degenerative Neurologic Diseases,Degenerative Neurologic Disorders,Nervous System Degenerative Diseases,Neurodegenerative Disorders,Neurologic Degenerative Conditions,Neurologic Degenerative Diseases,Neurologic Diseases, Degenerative,Degenerative Condition, Neurologic,Degenerative Conditions, Neurologic,Degenerative Neurologic Disease,Degenerative Neurologic Disorder,Neurodegenerative Disease,Neurodegenerative Disorder,Neurologic Degenerative Condition,Neurologic Degenerative Disease,Neurologic Disease, Degenerative,Neurologic Disorder, Degenerative,Neurologic Disorders, Degenerative

Related Publications

Maria K Lehtinen, and Azad Bonni
January 2017, The Journal of pharmacology and experimental therapeutics,
Maria K Lehtinen, and Azad Bonni
September 2016, Trends in pharmacological sciences,
Maria K Lehtinen, and Azad Bonni
April 1993, Biochemistry and molecular biology international,
Maria K Lehtinen, and Azad Bonni
June 2020, Antioxidants (Basel, Switzerland),
Maria K Lehtinen, and Azad Bonni
January 2017, Advances in protein chemistry and structural biology,
Maria K Lehtinen, and Azad Bonni
June 1993, Free radical biology & medicine,
Maria K Lehtinen, and Azad Bonni
June 1999, Molecular and cellular biochemistry,
Maria K Lehtinen, and Azad Bonni
February 2014, Journal of neurovirology,
Maria K Lehtinen, and Azad Bonni
January 2005, Current neurovascular research,
Maria K Lehtinen, and Azad Bonni
March 2020, Cell proliferation,
Copied contents to your clipboard!