Stimulus-response coupling in neurohypophysial peptide target cells. 1975

S Jard, and J Bockaert

Recent data on the effects of neurohypophysial peptides at the cellular level are discussed with respect to the two basic processes involved in peptide hormone action--i.e., specific recognition of the information contained in the hormonal molecule and the transformation of this information into a stimulus leading to the final biological response. Four main aspects of this general problem are considered. A. Hormone-Receptor Interaction: Recent contributions in this field concern partial analysis of the three-dimensional conformation of oxytocin and vasopressin moleculal cells of the mammalian kidney. Conformational analysis of oxytocin and vasopressin molecules leads to the conclusion that, in solution, these peptides probably have a compact and highly stabilized three-dimensional configuration. Models have been proposed that provide a valuable clue to the interpretation of structure-activity relationships among natural hormones and many structural analogues. Binding studies with tritiated oxytocin and vasopressin have permitted determination of the kinetic parameters of hormone-receptor interaction in amphibian epithelial cells and mammalian kidney. B. Stimulus Generation: The nature of the primary stimulus generated by hormone-receptor interaction is still unknown. In the epithelial target cells of the amphibian skin and bladder and of the mammalian kidney, one of the first consequences of hormone-receptor interaction is the activation of membrane-bound adenylate cyclase. Analysis of the correlations between hormonal binding and adenylate cyclase activation suggests that activation is a function of receptor occupation rather than of the number of hormonal molecules interacting with the receptor per unit of time. On medullary adenylate cyclase of pig kidney, the relation between receptor occupancy and enzyme activation was found to be complex and nonlinear. The effects of several agents (calcium, nucleotides) on receptor occupancy and adenylate cyclase activation have been described. In mammalian uterus and other smooth muscle target cells, there is no evidence for direct involvement of cyclic AMP in the contractile response to oxytocin and other neurohypophysial peptides.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002477 Cells The fundamental, structural, and functional units or subunits of living organisms. They are composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary. Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

S Jard, and J Bockaert
January 1980, Annual review of biophysics and bioengineering,
S Jard, and J Bockaert
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
S Jard, and J Bockaert
January 1993, Hypertension (Dallas, Tex. : 1979),
S Jard, and J Bockaert
January 1985, Biology of the cell,
S Jard, and J Bockaert
January 1986, Agents and actions. Supplements,
S Jard, and J Bockaert
January 1986, Progress in hemostasis and thrombosis,
S Jard, and J Bockaert
January 1980, Annals of the New York Academy of Sciences,
S Jard, and J Bockaert
December 1983, Clinics in laboratory medicine,
S Jard, and J Bockaert
January 1985, Advances in experimental medicine and biology,
Copied contents to your clipboard!