Potentiation of carbon tetrachloride hepatotoxicity in rats by pretreatment with polychlorinated biphenyls. 1975

G P Carlson

Pretreatment of male rats with Aroclor 1254 at a dose of 25 mg/kg i.p. for 6 days resulted in potentiation of the hepatotoxicity of inhaled carbon tetrachloride (CCl4) as evidenced by a decrease in liver glucose-6-phosphatase and elevations of serum glutamic oxalacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), isocitrate dehydrogenase, and sorbitol dehydrogenase. Aroclor 1254 alone did not demonstrate hepatotoxicity. Aroclor 1254 administration resulted in large increases in cytochrome c reductase, cytochrome P-450 (448) AND P-Nitroanisole demethylation. Subsequent exposure to CCl4 vapor resulted in over 70% decreases in the latter two parameters. The potentiation was dose-dependent with a dose of 5 mg/kg or higher being effective. Aroclor 1260 administration gave results similar to those of Aroclor 1254, but Aroclor 1221 enhanced CCl4 toxicity to a lesser extent.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009575 Nitroanisole O-Demethylase Oxidative enzyme which transforms p-nitroanisole into p-nitrophenol. Nitroanisole O Demethylase,Demethylase, Nitroanisole O,O Demethylase, Nitroanisole,O-Demethylase, Nitroanisole
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011078 Polychlorinated Biphenyls Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants. PCBs,Polychlorinated Biphenyl,Polychlorobiphenyl Compounds,Biphenyl, Polychlorinated,Biphenyls, Polychlorinated,Compounds, Polychlorobiphenyl
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002252 Carbon Tetrachloride Poisoning Poisoning that results from ingestion, injection, inhalation, or skin absorption of CARBON TETRACHLORIDE. CCl4 Poisoning,Poisoning, CCl4,Poisoning, Carbon Tetrachloride,CCl4 Poisonings,Carbon Tetrachloride Poisonings,Poisonings, Carbon Tetrachloride
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

G P Carlson
January 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology,
G P Carlson
November 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
G P Carlson
November 1995, Drug and chemical toxicology,
G P Carlson
December 1986, British journal of experimental pathology,
G P Carlson
November 1991, Toxicology and applied pharmacology,
G P Carlson
January 1971, Archives internationales de pharmacodynamie et de therapie,
G P Carlson
May 1990, The Journal of toxicological sciences,
G P Carlson
February 1971, Toxicology and applied pharmacology,
Copied contents to your clipboard!