PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. 2007

Qian Wang, and Xiao-Wei Chen, and Ben Margolis
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

Protein Associated with Lin Seven 1 (PALS1) is an evolutionarily conserved scaffold protein that targets to the tight junction in mammalian epithelia. Prior work in our laboratory demonstrated that the knockdown of PALS1 in Madin Darby canine kidney cells leads to tight junction and polarity defects. We have created new PALS1 stable knockdown cell lines with more profound reduction of PALS1 expression, and a more severe defect in tight junction formation was observed. Unexpectedly, we also observed a severe adherens junction defect, and both defects were corrected when PALS1 wild type and certain PALS1 mutants were expressed in the knockdown cells. We found that the adherens junction structural component E-cadherin was not effectively delivered to the cell surface in the PALS1 knockdown cells, and E-cadherin puncta accumulated in the cell periphery. The exocyst complex was also found to be mislocalized in PALS1 knockdown cells, potentially explaining why E-cadherin trafficking is disrupted. Our results suggest a broad and evolutionarily conserved role for the tight junction protein PALS1 in the biogenesis of adherens junction.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D050505 Mutant Proteins Proteins produced from GENES that have acquired MUTATIONS. Mutant Protein,Protein, Mutant,Proteins, Mutant
D019108 Tight Junctions Cell-cell junctions that seal adjacent epithelial cells together, preventing the passage of most dissolved molecules from one side of the epithelial sheet to the other. (Alberts et al., Molecular Biology of the Cell, 2nd ed, p22) Occluding Junctions,Zonula Occludens,Junction, Occluding,Junction, Tight,Junctions, Occluding,Junctions, Tight,Occluden, Zonula,Occludens, Zonula,Occluding Junction,Tight Junction,Zonula Occluden
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein

Related Publications

Qian Wang, and Xiao-Wei Chen, and Ben Margolis
November 2014, Scientific reports,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
October 2013, Scientific reports,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
August 2010, Journal of cell science,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
August 2022, Rhinology,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
December 2005, The Journal of cell biology,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
March 2016, Journal of dental research,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
July 2003, Journal of cell science,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
October 2010, The American journal of pathology,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
June 1996, Zeitschrift fur Gastroenterologie,
Qian Wang, and Xiao-Wei Chen, and Ben Margolis
April 2019, Advanced healthcare materials,
Copied contents to your clipboard!