Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replating potential. 1991

C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202-5121.

The replating capability of human multipotential (colony-forming unit-granulocyte-erythrocyte-macrophage-megakaryocyte [CFU-GEMM]) and erythroid (burst-forming unit-erythroid [BFU-E]) progenitors was assessed in vitro as a potential measure of self-renewal using purified, recombinant (r) human (hu) or murine (mu) mast cell growth factor (MGF), a ligand for the c-kit proto-oncogene receptor. Primary cultures of human umbilical cord blood or adult human bone marrow cells were initiated in methylcellulose with erythropoietin (Epo) alone or in combination with rhu interleukin-3 (IL-3) or MGF. Individual day 14 to 18 CFU-GEMM or BFU-E colonies were removed from primary cultures and reseeded into secondary methylcellulose cultures containing a combination of Epo, MGF, and rhu granulocyte-macrophage colony-stimulating factor (GM-CSF). The data showed a high replating efficiency of cord blood and bone marrow CFU-GEMM in response to Epo + MGF in terms of the percentage of colonies that could be replated and the number of secondary colonies formed per replated primary colony. The average number of hematopoietic colonies and clusters apparent from replated cultures of cord blood or bone marrow CFU-GEMM stimulated by Epo + MGF was greater than with Epo + rhuIL-3 or Epo alone. Replated cord blood CFU-GEMM gave rise to CFU-GEMM, BFU-E, and GM colony-forming units (CFU-GM) in secondary cultures. Replated bone marrow CFU-GEMM gave rise mainly to CFU-GM in secondary cultures. A more limited capacity for replating of cord blood and bone marrow BFU-E was observed. These studies show that CFU-GEMM responding to MGF have an enhanced replating potential, which may be promoted by MGF. These studies also support the concept that MGF acts on more primitive progenitors than IL-3.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008533 Megakaryocytes Very large BONE MARROW CELLS which release mature BLOOD PLATELETS. Megakaryocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming

Related Publications

C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
August 1993, Oncogene,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
May 1991, Blood,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
February 1991, Experimental hematology,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
August 1992, Blood,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
May 1993, The New England journal of medicine,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
November 1991, Experimental hematology,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
May 1994, Leukemia,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
April 2005, Experimental hematology,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
January 1994, International archives of allergy and immunology,
C E Carow, and G Hangoc, and S H Cooper, and D E Williams, and H E Broxmeyer
April 1996, Journal of hematotherapy,
Copied contents to your clipboard!