Characterization of murine monoclonal antibodies that recognize defined epitopes of pertussis toxin and neutralize its toxic effect on Chinese hamster ovary cells. 1991

M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
Department of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig, Germany.

Three murine monoclonal antibodies (MAb), E19, E205, and E251, raised against pertussis toxin reacted in Western blots (immunoblots) with the S1, S4, and S2-S3 subunits, respectively, and neutralized the Chinese hamster ovary cell-clustering activity of pertussis toxin. MAb E251 recognized a linear synthetic peptide corresponding to amino acids 107 to 120 of the S2 subunit, suggesting a role for this region in receptor binding.

UI MeSH Term Description Entries
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D000992 Antitoxins Antisera from immunized animals that is purified and used as a passive immunizing agent against specific BACTERIAL TOXINS. Antitoxin
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
August 1987, Infection and immunity,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
June 1989, Journal of immunology (Baltimore, Md. : 1950),
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
September 1989, Infection and immunity,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
January 1992, Revista cubana de medicina tropical,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
October 1993, Clinical biochemistry,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
November 1988, The Journal of infectious diseases,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
March 1989, Infection and immunity,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
January 1999, Microbiology and immunology,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
December 1990, Hybridoma,
M J Walker, and J Wehland, and K N Timmis, and B Raupach, and M A Schmidt
February 1988, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!