Setting positive end-expiratory pressure during jet ventilation to replicate the mean airway pressure of oscillatory ventilation. 2007

Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
Pediatric Critical Care, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville NC 27834, USA. bassa@ecu.edu

BACKGROUND High-frequency ventilation can be delivered with either oscillatory ventilation (HFOV) or jet ventilation (HFJV). Traditional clinician biases may limit the range of function of these important ventilation modes. We hypothesized that (1) the jet ventilator can be an accurate monitor of mean airway pressure (P (aw)) during HFOV, and (2) a mathematical relationship can be used to determine the positive end-expiratory pressure (PEEP) setting required for HFJV to reproduce the P (aw) of HFOV. METHODS In phase 1 of our experiment, we used a differential pressure pneumotachometer and a jet adapter in-line between an oscillator circuit and a pediatric lung model to measure P (aw), PEEP, and peak inspiratory pressure (PIP). Thirty-six HFOV setting combinations were studied, in random order. We analyzed the correlation between the pneumotachometer and HFJV measurements. In phase 2 we used the jet as the monitoring device during each of the same 36 combinations of HFOV settings, and recorded P (aw), PIP, and DeltaP. Then, for each combination of settings, the jet ventilator was placed in-line with a conventional ventilator and was set at the same rate and PIP as was monitored during HFOV. To determine the appropriate PEEP setting, we calculated the P (aw) contributed by the PIP, respiratory rate, and inspiratory time set for HFJV, and subtracted this from the goal P (aw). This value was the PEEP predicted for HFJV to match the HFOV P (aw). RESULTS The correlation coefficient between the pneumotachometer and HFJV measurements was r = 0.99 (mean difference 0.62 +/- 0.30 cm H(2)O, p < 0.001). The predicted and actual PEEP required were highly correlated (r = 0.99, p < 0.001). The mean difference in these values is not statistically significantly different from zero (mean difference 0.25 +/- 1.02 cm H(2)O, p > 0.15). CONCLUSIONS HFJV is an accurate monitor during HFOV. These measurements can be used to calculate the predicted PEEP necessary to match P (aw) on the 2 ventilators. Replicating the P (aw) with adequate PEEP on HFJV may help simplify transitioning between ventilators when clinically indicated.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008953 Models, Anatomic Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study. Anatomic Models,Models, Surgical,Moulages,Models, Anatomical,Anatomic Model,Anatomical Model,Anatomical Models,Model, Anatomic,Model, Anatomical,Model, Surgical,Moulage,Surgical Model,Surgical Models
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D012127 Respiratory Distress Syndrome, Newborn A condition of the newborn marked by DYSPNEA with CYANOSIS, heralded by such prodromal signs as dilatation of the alae nasi, expiratory grunt, and retraction of the suprasternal notch or costal margins, mostly frequently occurring in premature infants, children of diabetic mothers, and infants delivered by cesarean section, and sometimes with no apparent predisposing cause. Infantile Respiratory Distress Syndrome,Neonatal Respiratory Distress Syndrome,Respiratory Distress Syndrome, Infant
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006611 High-Frequency Jet Ventilation Respiratory support system used primarily with rates of about 100 to 200/min with volumes of from about one to three times predicted anatomic dead space. Used to treat respiratory failure and maintain ventilation under severe circumstances. Ventilation, High Frequency Jet,High Frequency Jet Ventilation,High-Frequency Jet Ventilations,Jet Ventilation, High-Frequency,Jet Ventilations, High-Frequency,Ventilation, High-Frequency Jet,Ventilations, High-Frequency Jet
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000403 Airway Resistance Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow. Airway Resistances,Resistance, Airway,Resistances, Airway
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes

Related Publications

Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
January 1985, Critical care medicine,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
January 2006, Cirugia y cirujanos,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
April 1986, The Journal of pediatrics,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
January 2010, Critical care (London, England),
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
February 2024, Current opinion in critical care,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
April 2011, Pediatric research,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
July 2005, Critical care medicine,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
August 1986, Journal of applied physiology (Bethesda, Md. : 1985),
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
March 1993, Critical care medicine,
Andora L Bass, and Michael A Gentile, and John P Heinz, and Damian M Craig, and Donna S Hamel, and Ira M Cheifetz
October 1988, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases,
Copied contents to your clipboard!