Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. 2006

Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
Department of Ophthalmology, College of Medicine, King Saud University, King Abdulaziz University Hospital, Airport Road, PO Box 245, Riyadh 11411, Saudi Arabia. abuasrar@KSU.edu.sa

OBJECTIVE To determine levels of the chemokines CCL1/I-309, CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta, CCL7/MCP-3, CCL8/MCP-2, CXCL5/ENA-78, CXCL6/GCP-2, CXCL10/IP-10, and CXCL11/I-TAC in the vitreous humor and serum, from patients with proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and rhegmatogenous retinal detachment with no PVR (RD), and to investigate the expression of MCP-1, CXCL12/SDF-1, and the chemokine receptor CXCR3 in epiretinal membranes. METHODS Paired vitreous humor and serum samples were obtained from patients undergoing vitrectomy for the treatment of RD (57 specimens), PVR (32 specimens), and PDR (88 specimens). The levels of chemokines were measured by enzyme-linked immunosorbent assays. Eighteen PDR and 5 PVR membranes were studied by immunohistochemical techniques. RESULTS Of all the chemokines studied, only MCP-1 and IP-10 were detected in vitreous humor samples. MCP-1 levels in vitreous humor samples were significantly higher than in serum samples (p < 0.001). MCP-1 levels were significantly higher in vitreous humor samples from patients with PVR and PDR compared with RD (p = 0.0002). MCP-1 levels in vitreous humor samples from patients with active PDR were significantly higher than in inactive PDR cases (p = 0.0224). IP-10 levels in vitreous humor samples were significantly higher than in serum samples (p = 0.0035). IP-10 levels were significantly higher in vitreous humor samples from patients with PVR and PDR compared with RD (p = 0.0083). The incidence of IP-10 detection in vitreous humor samples was significantly higher in active PDR cases compared with inactive cases (p = 0.0214). There was a significant association between the incidence of IP-10 detection and increased levels of MCP-1 in vitreous humor samples from all patients, and patients with RD and PDR (p < 0.001 for all comparisons). MCP-1, and SDF-1 were localized in myofibroblasts in PVR and PDR membranes and in vascular endothelial cells in PDR membranes. CXCR3 was expressed by vascular endothelial cells in PDR membranes. CONCLUSIONS MCP-1, IP-10 and SDF-1 may participate in pathogenesis of PVR and PDR. Myofibroblasts and vascular endothelial cells are the major cell types expressing MCP-1, SDF-1, and CXCR3 in epiretinal membranes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D003930 Diabetic Retinopathy Disease of the RETINA as a complication of DIABETES MELLITUS. It is characterized by the progressive microvascular complications, such as ANEURYSM, interretinal EDEMA, and intraocular PATHOLOGIC NEOVASCULARIZATION. Diabetic Retinopathies,Retinopathies, Diabetic,Retinopathy, Diabetic
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014822 Vitreous Body The transparent, semigelatinous substance that fills the cavity behind the CRYSTALLINE LENS of the EYE and in front of the RETINA. It is contained in a thin hyaloid membrane and forms about four fifths of the optic globe. Vitreous Humor,Bodies, Vitreous,Body, Vitreous,Humor, Vitreous,Humors, Vitreous,Vitreous Bodies,Vitreous Humors
D018630 Vitreoretinopathy, Proliferative Vitreoretinal membrane shrinkage or contraction secondary to the proliferation of primarily retinal pigment epithelial cells and glial cells, particularly fibrous astrocytes, followed by membrane formation. The formation of fibrillar collagen and cellular proliferation appear to be the basis for the contractile properties of the epiretinal and vitreous membranes. Proliferative Vitreoretinopathy,Vitreoretinopathy Neovascular Inflammatory,Inflammatories, Vitreoretinopathy Neovascular,Inflammatory, Vitreoretinopathy Neovascular,Neovascular Inflammatories, Vitreoretinopathy,Neovascular Inflammatory, Vitreoretinopathy,Proliferative Vitreoretinopathies,Vitreoretinopathies, Proliferative,Vitreoretinopathy Neovascular Inflammatories

Related Publications

Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
January 1998, Retina (Philadelphia, Pa.),
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
November 1995, Current eye research,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
November 1993, The British journal of ophthalmology,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
September 1999, Current eye research,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
February 1993, German journal of ophthalmology,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
October 2005, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
January 1992, Survey of ophthalmology,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
April 1993, The British journal of ophthalmology,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
April 1990, Nippon Ganka Gakkai zasshi,
Ahmed M Abu El-Asrar, and Sofie Struyf, and Dustan Kangave, and Karel Geboes, and Jo Van Damme
January 2003, Ophthalmic research,
Copied contents to your clipboard!