DNA and its cationic lipid complexes induce CpG motif-dependent activation of murine dendritic cells. 2007

Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.

Unmethylated CpG motifs in bacterial DNA, but not in vertebrate DNA, are known to trigger an inflammatory response of antigen-presenting cells (APC). In this study, we investigated the cytokine release from murine dendritic cells (DC) by the addition of various types of DNA in the free or complexed form with cationic lipids. Naked plasmid DNA and Escherichia coli DNA with immunostimulatory unmethylated CpG motifs induced pro-inflammatory cytokine secretion from granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow-derived DC and the DC cell-line, DC2.4 cells, though vertebrate calf thymus DNA (CT DNA) with less CpG motifs did not. These characteristics differed from mouse peritoneal resident macrophages that do not respond to any naked DNA. The amount of cytokines released from the DC was significantly increased by complex formation with cationic lipids when CpG-motif positive DNAs were used. Unlike murine macrophages or Flt-3 L cultured DC, GM-CSF DC did not release inflammatory cytokines in response to the addition of CT DNA/cationic lipid complex, suggesting that the activation is completely dependent on CpG motifs. Taken together, the results of the present study demonstrate that murine DC produce pro-inflammatory cytokines upon stimulation with CpG-containing DNAs and the responses are enhanced by cationic lipids. These results also suggest that DC are the major cells that respond to naked CpG DNA in vivo, although both DC and macrophages will release inflammatory cytokines after the administration of a DNA/cationic lipid complex.

UI MeSH Term Description Entries
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
June 1998, European journal of immunology,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
March 2000, Immunology,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
September 2009, Journal of immunology (Baltimore, Md. : 1950),
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
April 2002, Biochemical and biophysical research communications,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
August 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
March 2000, Cancer gene therapy,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
January 2004, Current medicinal chemistry,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
January 2005, Advances in genetics,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
January 2005, Advances in genetics,
Takaharu Yoshinaga, and Kei Yasuda, and Yoshiyuki Ogawa, and Makiya Nishikawa, and Yoshinobu Takakura
April 1997, Biochimica et biophysica acta,
Copied contents to your clipboard!