A dominant role for glucose in beta cell compensation of insulin resistance. 2007

Gordon C Weir, and Susan Bonner-Weir
Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA. gordon.weir@joslin.harvard.edu

Increased insulin secretion and expansion of pancreatic beta cell mass work together to maintain normal glucose levels when insulin resistance develops. Changes in glucose concentration have long been known to have profound effects upon the rates of insulin secretion and beta cell mass, but various other agents can also cause changes, raising questions about which mechanisms are dominant. Evidence favoring a dominant role for glucose is provided by Terauchi et al. in this issue of the JCI (see the related article beginning on page 246). Mice haploinsufficient for beta cell glucokinase (Gck) were unable to increase their beta cell mass in response to insulin resistance produced by high-fat feeding. Gck is known to be the glucose sensor for glucose metabolism in beta cells. The study also provides strong evidence that insulin receptor substrate 2 (Irs2), which is known to have major effects on beta cell growth and survival, is a key downstream mediator of the effects of glucose found in this study.

UI MeSH Term Description Entries
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D050417 Insulin-Secreting Cells A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN. Pancreatic beta Cells,beta Cells, Pancreatic,Pancreatic B Cells,B Cell, Pancreatic,B Cells, Pancreatic,Cell, Insulin-Secreting,Cells, Insulin-Secreting,Insulin Secreting Cells,Insulin-Secreting Cell,Pancreatic B Cell,Pancreatic beta Cell,beta Cell, Pancreatic

Related Publications

Gordon C Weir, and Susan Bonner-Weir
March 2006, The Journal of clinical investigation,
Gordon C Weir, and Susan Bonner-Weir
January 2003, International journal of experimental diabesity research,
Gordon C Weir, and Susan Bonner-Weir
December 2006, Nihon rinsho. Japanese journal of clinical medicine,
Gordon C Weir, and Susan Bonner-Weir
July 1998, Diabetes research and clinical practice,
Gordon C Weir, and Susan Bonner-Weir
April 1986, The Biochemical journal,
Copied contents to your clipboard!