Controlled expression of transgenes introduced by in vivo electroporation. 2007

Takahiko Matsuda, and Constance L Cepko
Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

In vivo electroporation is a powerful technique for the introduction of genes into organisms. Temporal and spatial regulation of expression of introduced genes, or of RNAi, would further enhance the utility of this method. Here we demonstrate conditional regulation of gene expression from electroporated plasmids in the postnatal rat retina and the embryonic mouse brain. For temporal regulation, Cre/loxP-mediated inducible expression vectors were used in combination with a vector expressing a conditionally active form of Cre recombinase, which is activated by 4-hydroxytamoxifen. Onset of gene expression was regulated by the timing of 4-hydroxytamoxifen administration. For spatial regulation, transgenes were expressed by using promoters specific for rod photoreceptors, bipolar cells, amacrine cells, Müller glia or progenitor cells. Combinations of these constructs will facilitate a variety of experiments, including cell-type-specific gene misexpression, conditional RNAi, and fate mapping of progenitor and precursor cells.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072056 Transcription Factor HES-1 A basic-helix-loop-helix transcription factor that functions as a transcriptional repressor for genes transcribed by bHLH proteins. For example, it may negatively regulate MYOGENESIS by inhibiting MyoD1 and ASH1 proteins. It is also required for the stability of FANCONI ANEMIA COMPLEMENTATION GROUP PROTEINS and their localization to the cell nucleus in response to DNA DAMAGE. Hairy and Enhancer of Split 1 Protein,Hairy-Like Transcription Factor,HES-1, Transcription Factor,Hairy Like Transcription Factor,Transcription Factor HES 1,Transcription Factor, Hairy-Like
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Takahiko Matsuda, and Constance L Cepko
October 2005, BMC biotechnology,
Takahiko Matsuda, and Constance L Cepko
January 2005, Methods in molecular biology (Clifton, N.J.),
Takahiko Matsuda, and Constance L Cepko
July 1994, Canadian journal of microbiology,
Takahiko Matsuda, and Constance L Cepko
June 2002, Expert opinion on biological therapy,
Takahiko Matsuda, and Constance L Cepko
January 1992, Molecular marine biology and biotechnology,
Takahiko Matsuda, and Constance L Cepko
January 1998, Hematology (Amsterdam, Netherlands),
Takahiko Matsuda, and Constance L Cepko
January 1990, Methods in molecular biology (Clifton, N.J.),
Takahiko Matsuda, and Constance L Cepko
October 2017, Cold Spring Harbor protocols,
Takahiko Matsuda, and Constance L Cepko
March 2006, The Journal of rheumatology,
Takahiko Matsuda, and Constance L Cepko
January 1993, Plant cell reports,
Copied contents to your clipboard!