Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. 1991

H C Chen, and D B Stern
Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801.

We have used an in vitro system to characterize ribonuclease activities present in spinach chloroplasts. We show that 3' end maturation of petD mRNA, which encodes subunit IV of the cytochrome b6/f complex, is affected by a 33-kDa protein that binds to a hairpin structure at the 3' end of the mature mRNA. Binding of the 33-kDa protein to the petD hairpin structure decreases the efficiency of 3' end maturation, probably by impeding the progress of the processive 3'-5' exonuclease activity involved in chloroplast mRNA processing. A two-base mutation in the stem of the petD hairpin structure creates a novel recognition site for a ribonuclease which competes with the normal processing exonuclease activity. This mutation results in a very low 3' end processing efficiency for mutant petD transcripts, and instead generates a second processing product that lacks a complete hairpin structure. An endonuclease activity which is biochemically distinct from the previously characterized exonuclease activities has also been identified. This endonuclease activity is EDTA-insensitive, and cleaves petD RNA both at the termination codon and at the mature RNA 3' end. Cleavage of petD mRNA at the termination codon leads to rapid degradation of upstream RNA. The possible roles of these ribonuclease activities in chloroplast mRNA decay in vivo are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

H C Chen, and D B Stern
June 1976, Plant physiology,
H C Chen, and D B Stern
September 1969, Biochimica et biophysica acta,
H C Chen, and D B Stern
February 1988, European journal of biochemistry,
H C Chen, and D B Stern
July 1969, The Journal of biological chemistry,
H C Chen, and D B Stern
January 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie,
H C Chen, and D B Stern
November 1969, Plant physiology,
H C Chen, and D B Stern
July 1967, Biochimica et biophysica acta,
Copied contents to your clipboard!