Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells. 1975

D Epstein, and S Elias-Bishko, and A Hershko

The modes of action of insulin and of inhibitors of protein synthesis on the degradation of labeled cellular proteins have been studied in cultured hepatoma (HTC) cells. Protein breakdown is accelerated upon the deprivation of serum (normally present in the culture medium), and this enhancement is inhibited by either insulin or cycloheximide. An exception is a limited class of rapidly turning over cellular proteins, the degradation of which is not influenced by insulin or cycloheximide. Alternative hypotheses to explain the relationship of protein synthesis to the regulation of protein breakdown, viz., control by the levels of precursors of protein synthesis, regulation by the state of the ribosome cycle, or requirement for a product of protein synthesis, have been examined. Protein breakdown was not influenced by amino acid deprivation, and measurements of valyl-tRNA levels in HTC cells subjected to various experimental conditions showed no correlation between the levels of charged tRNAVal and the rates of protein degradation. Three different inhibitors of protein synthesis (puromycin, pactamycin, and cycloheximide) suppressed enhanced protein breakdown in a similar fashion. A direct relationship was found between the respective potencies of these drugs to inhibit protein synthesis and to block enhanced protein breakdown. When cycloheximide and insulin were added following a prior incubation of HTC cells in a serum-free medium, protein breakdown was maximally suppressed within 15-30 min. Actinomycin D inhibited protein breakdown only after a time lag of about 90 min. It is suggested that the regulation of protein breakdown in hepatoma cells requires the continuous formation of a product of protein synthesis, in a manner analogous to the mode of the control of this process in bacteria.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010142 Pactamycin Antibiotic produced by Streptomyces pactum used as an antineoplastic agent. It is also used as a tool in biochemistry because it inhibits certain steps in protein synthesis.
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas

Related Publications

D Epstein, and S Elias-Bishko, and A Hershko
November 1975, Israel journal of medical sciences,
D Epstein, and S Elias-Bishko, and A Hershko
January 1985, Progress in clinical and biological research,
D Epstein, and S Elias-Bishko, and A Hershko
January 1983, International review of cytology,
D Epstein, and S Elias-Bishko, and A Hershko
January 1978, Advances in cyclic nucleotide research,
D Epstein, and S Elias-Bishko, and A Hershko
October 1974, FEBS letters,
D Epstein, and S Elias-Bishko, and A Hershko
August 1979, Cell biology international reports,
D Epstein, and S Elias-Bishko, and A Hershko
May 1985, Molecular and cellular endocrinology,
D Epstein, and S Elias-Bishko, and A Hershko
June 1971, Biochemical and biophysical research communications,
D Epstein, and S Elias-Bishko, and A Hershko
November 1985, European journal of biochemistry,
Copied contents to your clipboard!