Cloning, characterization and evolution of the BsuFI restriction endonuclease gene of Bacillus subtilis and purification of the enzyme. 1991

W Kapfer, and J Walter, and T A Trautner
Max-Planck-Institut für Molekulare Genetik, Berlin, FRG.

The restriction endonuclease (R.BsuFI) of Bacillus subtilis recognizes the target DNA sequence 5' CCGG. The R.BsuFI gene was found in close proximity to the cognate M.BsuFI gene, which had previously been characterized (1). Cloning of the R.BsuFI gene in E.coli was only possible with the M.BsuFI Mtase gene present on a compatible plasmid. The cloned R.BsuFI gene was expressed in E. coli and restriction activity was observed in vivo and in vitro. The R.BsuFI gene consists of 1185 bp, coding for a protein of 395 amino acids with a calculated molecular weight of 45.6 kD. The R.BsuFI enzyme was purified to homogeneity following overexpression. It presumably works as a dimer and cleaves the 5' CCGG target sequence between the two cytosines to produce sticky ends with 5' CG overhangs, like the isoschizomers R.MspI and R.HpaII. The relatedness between R.BsuFI and R.MspI is reflected by significant similarities of the amino acid sequences of both enzymes. This is the first case where such similarities have been observed between isoschizomeric restriction endonucleases which belong to 5mC specific R/M systems. This observation suggests that R.BsuFI and R.MspI genes derive from a common ancestor. In spite of such functional and evolutionary relatedness, the R/M systems differ in the arrangement of their R and M genes. In the BsuFI system transcription of the two genes is convergent, whereas divergent transcription occurs in the MspI system.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

W Kapfer, and J Walter, and T A Trautner
December 1992, The Journal of biological chemistry,
W Kapfer, and J Walter, and T A Trautner
December 1977, Biochimica et biophysica acta,
W Kapfer, and J Walter, and T A Trautner
April 1998, Applied and environmental microbiology,
W Kapfer, and J Walter, and T A Trautner
January 2005, Applied biochemistry and biotechnology,
W Kapfer, and J Walter, and T A Trautner
January 1992, Zeitschrift fur Naturforschung. C, Journal of biosciences,
W Kapfer, and J Walter, and T A Trautner
August 1989, Gene,
W Kapfer, and J Walter, and T A Trautner
December 1991, Journal of bacteriology,
W Kapfer, and J Walter, and T A Trautner
October 1975, The Journal of biological chemistry,
Copied contents to your clipboard!