Dual effect of thapsigargin on cell death in porcine aortic smooth muscle cells. 2007

Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
Department of Biochemistry, National Defense Medical Center, 161 Min-Chuan East Road Section 6, Taipei, Taiwan, Republic of China.

A sustained increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) can cause cell death. In this study, we found that, in cultured porcine aortic smooth muscle cells, endoplasmic reticulum (ER) stress, triggered by depletion of Ca(2+) stores by thapsigargin (TG), induced an increase in the [Ca(2+)](i) and cell death. However, the TG-induced death was not related to the [Ca(2+)](i) increase but was mediated by targeting of activated Bax to mitochondria and the opening of mitochondrial permeability transition pores (PTPs). Once the mitochondrial PTPs had opened, several events, including collapse of the mitochondrial membrane potential, cytochrome c release, and caspase-3 activation, occurred and the cells died. TG-induced cell death was completely inhibited by the pan-caspase inhibitor Z-VAD-fmk and was enhanced by the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), suggesting the existence of a Ca(2+)-dependent anti-apoptotic mechanism. After TG treatment, Ca(2+)-sensitive mitogen-activated protein kinase (MAPK) activation was induced and acted as a downstream effector of phosphatidylinositol 3-kinase (PI 3-kinase). The protective effect of Z-VAD-fmk on TG-induced cell death was reversed by BAPTA, PD-098059 (an MAPK kinase inhibitor), or LY-294002 (a PI 3-kinase inhibitor). Taken together, our data indicate that ER stress simultaneously activate two pathways, the mitochondrial caspase-dependent death cascade and the Ca(2+)-dependent PI 3-kinase/MAPK anti-apoptotic machinery. The Bax activation and translocation, but not the [Ca(2+)](i) increase, may activate mitochondrial PTPs, which, in turn, causes activation of caspases and cell death, whereas Ca(2+)-dependent MAPK activation counteracts death signaling; removal of Ca(2+) activated a second caspase-independent death pathway.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000083162 Mitochondrial Permeability Transition Pore A multiprotein inner mitochondrial complex which opens only under certain pathological conditions (e.g., OXIDATIVE STRESS) uncoupling the membrane leading to APOPTOSIS and MITOCHONDRIAL TRANSMEMBRANE PERMEABILITY-DRIVEN NECROSIS particularly in CARDIOMYOCYTES during MYOCARDIAL REPERFUSION INJURY. Mitochondrial Megachannel,Mitochondrial Permeability Transition Pore (mPTP),mPTP Protein

Related Publications

Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
July 2012, European journal of pharmacology,
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
November 2000, Journal of cardiovascular pharmacology,
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
July 1990, Matrix (Stuttgart, Germany),
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
May 1992, Cell calcium,
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
August 1988, Biochemical and biophysical research communications,
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
January 1989, Arteriosclerosis (Dallas, Tex.),
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
January 1991, Japanese heart journal,
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
May 1999, Clinical and experimental hypertension (New York, N.Y. : 1993),
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
January 1980, Scanning electron microscopy,
Ting-Yu Chin, and Hsiu-Chen Lin, and Ju-Ping Kuo, and Sheau-Huei Chueh
February 2018, Cell death & disease,
Copied contents to your clipboard!