Androgen regulation of prostate morphoregulatory gene expression: Fgf10-dependent and -independent pathways. 2007

Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
Department of Urology, MC 955, University of Illinois at Chicago, 820 South Wood Street, Chicago, Illinois 60612, USA.

Androgens are essential and sufficient for prostate gland morphogenesis; however, the downstream gene targets that mediate this action are unclear. To identify androgen-regulated genes involved in prostate development, we used short-term organ culture and examined the effect of testosterone on the expression of several critical prostate morphoregulatory genes. Rat ventral prostates (VP) and lateral prostates (LP) were collected at birth, and contralateral lobes were cultured for 18 h in the presence or absence of 10 nM testosterone with or without OH-flutamide to block residual androgens. Gene expression was quantitated using real-time RT-PCR. Although expression of Fgf10, Nkx3.1, and Ptc was increased in both prostate lobes, other genes were regulated by testosterone in a lobe-specific manner. This included up-regulation of epithelial genes FgfR2iiib, Shh, Hoxb13, and Bmp7 in the VP specifically and down-regulation of mesenchymal genes Wnt5a (VP) and Bmp4 (LP). Thus, in addition to stimulation of homeobox genes and paracrine-acting growth factors, androgens may positively regulate prostatic development through suppression of growth inhibitory genes. Because previous studies revealed a similar gene regulation pattern in response to exogenous Fgf10, experiments were performed to identify androgen-regulated genes mediated through Fgf10 signaling. Short-term VP and LP cultures with FgfR antagonist PD173074 and Mek inhibitor U0126 identified epithelial Shh and Hoxb13 up-regulation by androgens to be Fgf10-dependent. We propose that androgen regulation of prostate development is mediated through positive and negative regulation of multiple morphoregulatory genes acting in combination through complex gene networks. Lobe-specific responses may provide a developmental basis for prostate gland heterogeneity.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011467 Prostate A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM. Prostates
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
September 1999, British journal of cancer,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
January 2014, Asian Pacific journal of cancer prevention : APJCP,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
October 2017, Experimental cell research,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
February 2017, Developmental dynamics : an official publication of the American Association of Anatomists,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
July 2020, Asian journal of urology,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
September 1990, Molecular endocrinology (Baltimore, Md.),
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
March 2005, Endocrine-related cancer,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
April 2009, Cancer research,
Yongbing Pu, and Liwei Huang, and Lynn Birch, and Gail S Prins
June 2022, Molecular biology reports,
Copied contents to your clipboard!