Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. 2007

S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.

The effects of controlled voluntary hyperventilation (Hyp) on phosphocreatine (PCr) kinetics and muscle deoxygenation were examined during moderate-intensity plantar flexion exercise. Male subjects (n = 7) performed trials consisting of 20-min rest, 6-min exercise, and 10-min recovery in control [Con; end-tidal Pco(2) (Pet(CO(2))) approximately 33 mmHg] and Hyp (Pet(CO(2)) approximately 17 mmHg) conditions. Phosphorus-31 magnetic resonance and near-infrared spectroscopy were used simultaneously to monitor intramuscular acid-base status, high-energy phosphates, and muscle oxygenation. Resting intracellular hydrogen ion concentration ([H(+)](i)) was lower (P < 0.05) in Hyp [90 nM (SD 3)] than Con [96 nM (SD 4)]; however, at end exercise, [H(+)](i) was greater (P < 0.05) in Hyp [128 nM (SD 19)] than Con [120 nM (SD 17)]. At rest, [PCr] was not different between Con [36 mM (SD 2)] and Hyp [36 mM (SD 1)]. The time constant (tau) of PCr breakdown during transition from rest to exercise was greater (P < 0.05) in Hyp [39 s (SD 22)] than Con [32 s (SD 22)], and the PCr amplitude was greater (P < 0.05) in Hyp [26% (SD 4)] than Con [22% (SD 6)]. The deoxyhemoglobin and/or deoxymyoglobin (HHb) tau was similar between Hyp [13 s (SD 8)] and Con [10 s (SD 3)]; however, the amplitude was increased (P < 0.05) in Hyp [40 arbitrary units (au) (SD 23)] compared with Con [26 au (SD 17)]. In conclusion, our results indicate that Hyp-induced hypocapnia enhanced substrate-level phosphorylation during moderate-intensity exercise. In addition, the increased amplitude of the HHb response suggests a reduced local muscle perfusion in Hyp compared with Con.

UI MeSH Term Description Entries
D006985 Hyperventilation A pulmonary ventilation rate faster than is metabolically necessary for the exchange of gases. It is the result of an increased frequency of breathing, an increased tidal volume, or a combination of both. It causes an excess intake of oxygen and the blowing off of carbon dioxide. Hyperventilations
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests

Related Publications

S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
April 2010, European journal of applied physiology,
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
July 2003, Journal of applied physiology (Bethesda, Md. : 1985),
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
March 2010, European journal of applied physiology,
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
October 2019, Journal of applied physiology (Bethesda, Md. : 1985),
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
April 2008, Experimental physiology,
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
August 2008, Journal of applied physiology (Bethesda, Md. : 1985),
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
February 2010, European journal of applied physiology,
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
September 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
S C Forbes, and J M Kowalchuk, and R T Thompson, and G D Marsh
April 2008, European journal of applied physiology,
Copied contents to your clipboard!