Sp1 is essential for p16 expression in human diploid fibroblasts during senescence. 2007

Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University, Health Science Center, Beijing, China.

BACKGROUND p16(INK4a) tumor suppressor protein has been widely proposed to mediate entrance of the cells into the senescent stage. Promoter of p16(INK4a) gene contains at least five putative GC boxes, named GC-I to V, respectively. Our previous data showed that a potential Sp1 binding site, within the promoter region from -466 to -451, acts as a positive transcription regulatory element. These results led us to examine how Sp1 and/or Sp3 act on these GC boxes during aging in cultured human diploid fibroblasts. RESULTS Mutagenesis studies revealed that GC-I, II and IV, especially GC-II, are essential for p16(INK4a) gene expression in senescent cells. Electrophoretic mobility shift assays (EMSA) and ChIP assays demonstrated that both Sp1 and Sp3 bind to these elements and the binding activity is enhanced in senescent cells. Ectopic overexpression of Sp1, but not Sp3, induced the transcription of p16(INK4a). Both Sp1 RNAi and Mithramycin, a DNA intercalating agent that interferes with Sp1 and Sp3 binding activities, reduced p16(INK4a) gene expression. In addition, the enhanced binding of Sp1 to p16(INK4a) promoter during cellular senescence appeared to be the result of increased Sp1 binding affinity, not an alteration in Sp1 protein level. CONCLUSIONS All these results suggest that GC- II is the key site for Sp1 binding and increase of Sp1 binding activity rather than protein levels contributes to the induction of p16(INK4a) expression during cell aging.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D016329 Sp1 Transcription Factor Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES. Transcription Factor, Sp1,Specificity Protein 1 Transcription Factor
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell
D019941 Cyclin-Dependent Kinase Inhibitor p16 A product of the p16 tumor suppressor gene (GENES, P16). It is also called INK4 or INK4A because it is the prototype member of the INK4 CYCLIN-DEPENDENT KINASE INHIBITORS. This protein is produced from the alpha mRNA transcript of the p16 gene. The other gene product, produced from the alternatively spliced beta transcript, is TUMOR SUPPRESSOR PROTEIN P14ARF. Both p16 gene products have tumor suppressor functions. CDKN2 Protein,CDKN2A Protein,Cdk4-Associated Protein p16,Cyclin-Dependent Kinase Inhibitor-2A,INK4A Protein,MTS1 Protein,Multiple Tumor Suppressor-1,p16(INK4A),p16INK4 Protein,p16INK4A Protein,Cdk4 Associated Protein p16,Cyclin Dependent Kinase Inhibitor 2A,Cyclin Dependent Kinase Inhibitor p16,Multiple Tumor Suppressor 1,Protein, INK4A

Related Publications

Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
May 1994, Biochemical and biophysical research communications,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
March 2016, Molecular and cellular biochemistry,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
October 1985, Cell biology international reports,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
December 2002, Molecular and cellular biology,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
November 2013, Cell cycle (Georgetown, Tex.),
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
January 2020, Molecular biology reports,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
April 1998, Aging (Milan, Italy),
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
December 2014, Aging cell,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
September 1996, Journal of cellular physiology,
Junfeng Wu, and Lixiang Xue, and Mo Weng, and Ying Sun, and Zongyu Zhang, and Wengong Wang, and Tanjun Tong
May 1985, Mechanisms of ageing and development,
Copied contents to your clipboard!