Nuclear translocation of fibroblast growth factor during Xenopus mesoderm induction. 1991

R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
Laboratory of Cell Biology, Tsukuba Life Science Center (RIKEN), Japan.

Mesoderm induction, the earliest inductive cell-cell interaction in vertebrate embryogenesis, is thought to be mediated by polypeptide growth factors including fibroblast growth factor (FGF). Here we present an immunocytochemical analysis of FGF during mesoderm induction in Xenopus laevis. Antibodies to both basic and acidic FGF were immunoreactive with oocytes and early embryos. Immunostaining was predominantly intracellular and was concentrated in the marginal zone and vegetal pole throughout cleavage and blastula stages. In addition, basic FGF (bFGF) antibodies showed intense nuclear staining in these regions, at and following the mid-blastula transition, when embryonic transcription begins. Acidic FGF (aFGF) also appeared in some nuclei at these stages. Taken together the evidence suggests that FGF is prepositioned in mesoderm-forming regions and is actively involved in mesoderm induction in vivo.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002970 Cleavage Stage, Ovum The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA. Segmentation Stage, Ovum,Cleavage Stages, Ovum,Ovum Cleavage Stage,Ovum Cleavage Stages,Ovum Segmentation Stage,Ovum Segmentation Stages,Segmentation Stages, Ovum
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts

Related Publications

R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
March 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
January 1992, Development (Cambridge, England),
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
June 1990, Development (Cambridge, England),
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
January 1991, Annals of the New York Academy of Sciences,
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
December 1996, Development genes and evolution,
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
January 1990, Journal of reproduction and fertility. Supplement,
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
January 1993, Journal of cell science,
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
August 1994, Development, growth & differentiation,
R A Shiurba, and N Jing, and T Sakakura, and S F Godsave
May 1994, Molecular and cellular biology,
Copied contents to your clipboard!