Semenogelin, the main protein of the human semen coagulum, regulates sperm function. 2007

Eve de Lamirande
Urology Research Laboratory, Royal Victoria Hospital, Faculty of Medicine, McGill University, Montréal, Québec, Canada. edelamirande@yahoo.com

Semenogelin (Sg), the main component of the human semen coagulum, is an important and versatile protein acting on several sperm parameters, both as intact or degraded Sg. Sg originates mostly from seminal vesicle and probably is responsible for sperm immobilization in the seminal coagulum. Purified Sg can be cross-linked by transglutaminase or phosphorylated by kinases, but the actual occurrence of these reactions in reproductive physiology is not clear. Experimental evidence demonstrates that prostate-specific antigen (PSA) rapidly cleaves Sg, an event temporally associated with semen liquefaction and initiation of sperm motility. Sg and its degradation peptides participate in various processes including Zn +2 shuttling, antibacterial activity, hyaluronidase activation, and so on. Sg inhibits sperm motility at the concentration found in the coagulum, but the rapid processing by PSA allows initiation of movement. The mechanism of Sg action and its targets are not known, but improper Sg degradation decreases fertility. Sg and its degradation peptides block sperm capacitation and associated events at concentrations much lower than those of seminal plasma and could play important role in preventing premature capacitation. The effects of Sg are dependent on time and proteolysis due to PSA, and any imbalance may affect sperm physiology and fertility.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D017430 Prostate-Specific Antigen A glycoprotein that is a kallikrein-like serine proteinase and an esterase, produced by epithelial cells of both normal and malignant prostate tissue. It is an important marker for the diagnosis of prostate cancer. Kallikrein hK3,gamma-Seminoprotein,hK3 Kallikrein,Prostate Specific Antigen,Semenogelase,Seminin,Kallikrein, hK3,gamma Seminoprotein
D029607 Seminal Vesicle Secretory Proteins The secretory proteins of the seminal vesicles are proteins and enzymes that are important in the rapid clotting of the ejaculate. The major clotting protein is seminal vesicle-specific antigen. Many of these seminal vesicle proteins are under androgen regulation, and are substrates for the prostatic enzymes, such as the PROSTATE-SPECIFIC ANTIGEN, a protease and an esterase. Seminal Vesicle Clotting Proteins,Clotting Protein (Seminal Vesicle),Clotting Proteins (Seminal Vesicle),Seminal Vesicle Clotting Protein,Seminal Vesicle Proteins,Proteins, Seminal Vesicle,Vesicle Proteins, Seminal

Related Publications

Eve de Lamirande
June 1999, Cellular and molecular life sciences : CMLS,
Eve de Lamirande
August 1995, Human reproduction (Oxford, England),
Eve de Lamirande
February 1994, Human reproduction (Oxford, England),
Eve de Lamirande
August 2003, Journal of molecular evolution,
Copied contents to your clipboard!