Parathyroid hormone selectively inhibits L-type calcium channels in single vascular smooth muscle cells of the rat. 1991

R Wang, and E Karpinski, and P K Pang
Department of Physiology, University of Alberta, Edmonton, Canada.

1. The active synthetic N-terminal fragment of bovine parathyroid hormone, bPTH-(1-34) at a concentration of 1 microM, decreased the peak amplitude of the long-lasting (L-type) calcium channel current by 37% (n = 14, P less than 0.01) in rat tail artery smooth muscle cells. By contrast, this fragment of parathyroid hormone (PTH) (1 microM) had no effect on the transient (T-type) calcium channel current in the same cell preparation. 2. The inhibitory effect of bPTH-(1-34) on L-channel currents was reversible and could be antagonized by the L-channel agonist, Bay K 8644. In contrast, bPTH-(1-34) inhibited Bay K 8644-induced amplification of L-channel currents. 3. The inhibitory effect of bPTH-(1-34) on L-Channel currents was dose dependent with a threshold concentration of less than 10(-7), and voltage dependent with increased inhibition at more positive holding potentials. However, this effect of bPTH-(1-34) was not dependent on different pulse lengths or interpulse intervals. 4. The kinetics of deactivation of L-channel currents were not changed although the instantaneous amplitude of the L-channel tail current was reduced by bPTH-(1-34). 5. Application of bPTH-(1-34) antagonists (10(-6) M-bPTH-(3-34) and 10(-5) M-bPTH-(7-34] did not result in any significant change in the magnitude of L-channel currents (n = 15 and n = 7, respectively). 6. Pre-incubation of cells with bPTH-(3-34) for more than 15 min abolished the inhibitory effect of bPTH-(1-34) on L-channel currents. 7. The present study provides direct evidence to demonstrate the PTH, an endogenous circulating hormone, is a selective inhibitor of L-channel currents in vascular smooth muscle cells.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001498 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester A dihydropyridine derivative, which, in contrast to NIFEDIPINE, functions as a calcium channel agonist. The compound facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels, thereby causing vasoconstrictor and positive inotropic effects. It is used primarily as a research tool. BK-8644,Bay R5417,Bay-K-8644,Bay-K-8644, (+)-Isomer,Bay-K-8644, (+-)-Isomer,Bay-K-8644, (-)-Isomer,Bay-K8644,Bay-R-5417,BK 8644,BK8644,Bay K 8644,Bay K8644,Bay R 5417,BayK8644,BayR5417,R5417, Bay
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R Wang, and E Karpinski, and P K Pang
December 1997, The Journal of biological chemistry,
R Wang, and E Karpinski, and P K Pang
November 2014, Pflugers Archiv : European journal of physiology,
R Wang, and E Karpinski, and P K Pang
January 1995, Journal of molecular and cellular cardiology,
R Wang, and E Karpinski, and P K Pang
January 2015, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
R Wang, and E Karpinski, and P K Pang
July 1989, Pflugers Archiv : European journal of physiology,
R Wang, and E Karpinski, and P K Pang
September 1997, Canadian journal of physiology and pharmacology,
R Wang, and E Karpinski, and P K Pang
January 1996, Journal of vascular research,
R Wang, and E Karpinski, and P K Pang
January 1995, Journal of vascular research,
R Wang, and E Karpinski, and P K Pang
November 1999, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!