Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. 2007

Xiuguo Li, and Jun-Shik Choi
College of Pharmacy, Chosun University, Gwangju 501-759, Republic of Korea.

As many anticancer agents paclitaxel is a substrate for ATP-binding cassette (ABC) transporters such as P-glycoprotein-mediated efflux, and its metabolism in humans mainly catalyzed by CYP 3A4 and 2C8. Genistein, an isoflavonoid, is supposed to be an inhibitor of some ABC transporters, and its oxidative metobolism catalyzed by CYP 3A4 and 2C8. The purpose of this study was to investigate the effect of orally administered genistein on the pharmacokinetics of paclitaxel administered through oral and intravenous (i.v.) route in rats. A single dose of paclitaxel administered orally (30 mg/kg) or i.v. (3mg/kg) alone or 30 min after oral administration of genistein (3.3mg/kg or 10mg/kg). The presence of 10mg/kg genistein significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC, 54.7% greater) of orally administered paclitaxel, which was due to the significantly (p<0.05) decreased total plasma clearance (CL/F) of paclitaxel (35.2% lower). Genistein also increased the peak concentration (C(max)) of paclitaxel significantly (p<0.05 by 3.3mg/kg, 66.8% higher; p<0.01 by 10mg/kg, 91.8% higher). Consequently, the absolute bioavailability (F) of paclitaxel in the presence of genistein was 0.020-0.025, which was elevated more than the control group (0.016); and the relative bioavailability (Fr) of orally administered paclitaxel was increased from 1.26- to 1.55-fold. Ten milligrams per kilogram genistein also significantly (p<0.05) increased the AUC (40.5% greater) and reduced the total clearance (CLt, 30% lower) of i.v. administered paclitaxel. The presence of genistein improved the systemic exposure of paclitaxel in this study. The pharmacokinetic interaction between them should be taken into consideration when paclitaxel is used with genistein or the dietary supplements full of genistein.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004366 Nonprescription Drugs Medicines that can be sold legally without a DRUG PRESCRIPTION. Drugs, Non-Prescription,Non-Prescription Drug,Nonprescription Drug,OTC Drug,OTC Drugs,Over-the-Counter Drug,Over-the-Counter Drugs,Patent Medicine,Patent Medicines,Drugs, Nonprescription,Medicines, Patent,Non-Prescription Drugs,Drug, Non-Prescription,Drug, Nonprescription,Drug, OTC,Drug, Over-the-Counter,Drugs, Non Prescription,Drugs, OTC,Drugs, Over-the-Counter,Medicine, Patent,Non Prescription Drug,Non Prescription Drugs,Over the Counter Drug,Over the Counter Drugs
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities

Related Publications

Xiuguo Li, and Jun-Shik Choi
March 2005, Biological & pharmaceutical bulletin,
Xiuguo Li, and Jun-Shik Choi
January 1988, Clinical therapeutics,
Xiuguo Li, and Jun-Shik Choi
March 1989, Journal of pharmaceutical sciences,
Xiuguo Li, and Jun-Shik Choi
December 1992, American journal of veterinary research,
Xiuguo Li, and Jun-Shik Choi
May 2013, American journal of veterinary research,
Xiuguo Li, and Jun-Shik Choi
June 2000, American journal of veterinary research,
Xiuguo Li, and Jun-Shik Choi
January 1996, The American journal of clinical nutrition,
Xiuguo Li, and Jun-Shik Choi
November 2001, Chemical & pharmaceutical bulletin,
Xiuguo Li, and Jun-Shik Choi
September 1980, The Journal of nutrition,
Xiuguo Li, and Jun-Shik Choi
April 2013, Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego,
Copied contents to your clipboard!