Survival of an islet allograft deficient in iNOS after implantation into diabetic NOD mice. 2006

Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
Department of Medical Cell Biology, Uppsala University Uppsala, Sweden. Andreas.Borjesson@medcellbiol.uu.se

Proinflammatory cytokines play a major role in rejection of pancreatic islet allografts and in type 1 diabetes (T1D). In rodent islets, exposure to IL-1beta alone or combined with IFN-gamma induces expression of inducible nitric oxide synthase (iNOS). Inhibition of iNOS or a deletion of the iNOS gene has been shown to be protective in animal models of T1D. In the present study we tested the hypothesis that transplantation of pancreatic islets deficient in iNOS (iNOS-/-) would permit increased graft survival. Pancreatic islets isolated from wild-type (wt) mice and iNOS-/- mice were allogeneically transplanted beneath the kidney capsule of spontaneously diabetic NOD mice. When blood glucose increased above 12.0 mM after preceding normalization of hyperglycemia, animals were sacrificed. Histological examinations of grafts were performed and graft gene expression was analyzed by real-time PCR. Transplantations of the two types of islets could reverse hyperglycemia and the grafts functioned for on average 1 week posttransplantation. Morphological examination of both types of islet grafts showed immune cell infiltration around and within the grafts. Remaining endocrine cells could be observed in wt and iNOS-/- islet grafts. In the removed grafts iNOS-/- islet tissue contained higher mRNA levels of insulin, proinsulin convertases (PC-1 and PC-2), and IL-1beta compared to transplanted wt islets. The assessments of insulin, PC-1 and PC-2 mRNAs of the grafts suggest that the iNOS-/- islets may be more resistant to destruction in the transplantation model used; however, this was not sufficient to prolong the period of normoglycemia posttransplantation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016381 Islets of Langerhans Transplantation The transference of pancreatic islets within an individual, between individuals of the same species, or between individuals of different species. Grafting, Islets of Langerhans,Pancreatic Islets Transplantation,Transplantation, Islets of Langerhans,Transplantation, Pancreatic Islets,Islands of Langerhans Transplantation,Islands of Pancreas Transplantation,Islet Transplantation,Transplantation, Islands of Langerhans,Transplantation, Islands of Pancreas,Transplantation, Islet,Islet Transplantations,Islets Transplantation, Pancreatic,Transplantations, Islet

Related Publications

Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
April 2003, Diabetes,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
October 2009, Journal of pineal research,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
April 1993, Transplantation,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
February 1993, Diabetes,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
March 1981, Acta pathologica et microbiologica Scandinavica. Section A, Pathology,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
April 1994, Transplantation proceedings,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
January 1990, Hormone and metabolic research. Supplement series,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
January 2009, Diabetes,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
January 1997, Cell transplantation,
Andreas Börjesson, and Annika K Andersson, and Stellan Sandler
April 1996, Transplantation proceedings,
Copied contents to your clipboard!