Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite. 2007

H Li, and K A Khor, and V Chow, and P Cheang
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798. hli1@bnl.gov

This study aimed to fabricate bulk nanostructured hydroxyapatite (HA) pellets with improved properties using spark plasma sintering (SPS) for orthopedic applications. Spray-dried nanostructured HA (nSD-HA) powders were consolidated using the rapid SPS processing. The SPS processed nSD-HA was characterized using Raman spectroscopy and field emission scanning electron microscopy (FESEM). Mechanical properties of the consolidates were also evaluated through indentation approach. The nanostructures ( approximately 80 nm in grain size) of the starting powders were successfully retained after the SPS processing operated at 950 degrees C with <15 min holding time. The SPS consolidated nSD-HA showed promising mechanical properties, approximately 118 GPa for Young's modulus, and up to 2.22 MPa m(0.5) for fracture toughness. SPS holding time showed minor influence on the phases of the pellets. Furthermore, the spheroidized nanostructured HA retained the HA structure after the SPS consolidation. Preliminary cytotoxicity and cell attachment studies were also carried out using a human osteoblast cell line hFOB 1.19. Enhanced cell attachment and proliferation on the nanostructured pellets were revealed. The presence of the nanostructures accounts mainly for the enhanced mechanical properties and promoted proliferation of the osteoblast cells. This study suggests that the SPS technique is an appropriate process for fabrication of bulk nSD-HA from nanostructured powder.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D049329 Nanostructures Materials which have structured components with at least one dimension in the range of 1 to 100 nanometers. These include NANOCOMPOSITES; NANOPARTICLES; NANOTUBES; and NANOWIRES. Nanomaterials,Nanostructured Materials,Material, Nanostructured,Materials, Nanostructured,Nanomaterial,Nanostructure,Nanostructured Material
D017886 Durapatite The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis. Calcium Hydroxyapatite,Hydroxyapatite,Hydroxylapatite,Alveograf,Calcitite,Interpore-200,Interpore-500,Osprovit,Ossein-Hydroxyapatite Compound,Ossopan,Osteogen,Periograf,Hydroxyapatite, Calcium,Interpore 200,Interpore 500,Interpore200,Interpore500,Ossein Hydroxyapatite Compound
D033362 Powder Diffraction Method of using a polycrystalline powder and Rietveld refinement (LEAST SQUARES ANALYSIS) of X-RAY DIFFRACTION or NEUTRON DIFFRACTION. It circumvents the difficulties of producing single large crystals. Diffraction, Powder

Related Publications

H Li, and K A Khor, and V Chow, and P Cheang
April 2020, Materials (Basel, Switzerland),
H Li, and K A Khor, and V Chow, and P Cheang
June 2019, Materials (Basel, Switzerland),
H Li, and K A Khor, and V Chow, and P Cheang
October 2013, Journal of biomedical materials research. Part A,
H Li, and K A Khor, and V Chow, and P Cheang
September 1990, Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan,
H Li, and K A Khor, and V Chow, and P Cheang
March 2023, Materials (Basel, Switzerland),
H Li, and K A Khor, and V Chow, and P Cheang
November 2020, Materials (Basel, Switzerland),
H Li, and K A Khor, and V Chow, and P Cheang
January 1999, Journal of materials science. Materials in medicine,
H Li, and K A Khor, and V Chow, and P Cheang
February 2022, Materials (Basel, Switzerland),
H Li, and K A Khor, and V Chow, and P Cheang
February 2022, Micron (Oxford, England : 1993),
H Li, and K A Khor, and V Chow, and P Cheang
June 2014, Nano letters,
Copied contents to your clipboard!