In vitro selection of variants of human immunodeficiency virus type 1 resistant to 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine. 1992

Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
Lady Davis Institute-Jewish General Hospital, Chemin Cote Ste-Catherine, Quebec, Canada.

Drug-resistant variants of human immunodeficiency virus type 1 (HIV-1) have been isolated by in vitro selection. MT-4 cells were infected with either a laboratory strain (HIV-IIIB) or a clinical isolate (no. 187) of HIV-1 and maintained in medium containing subeffective concentrations of the drugs 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxyinosine (ddI). By gradually increasing the drug concentration in the culture medium during propagation of the virus on fresh MT-4 cells, we were able to isolate variants of HIV-IIIB and clinical isolate 187 which showed up to 100-fold increases in resistance to the drugs. The drug resistance phenotypes remained stable after propagation of the variants in the absence of drug pressure for over 2 months. However, variants resistant to one drug showed little or no cross-resistance to the other, suggesting that the genetic bases for resistance to the compounds differed. Genotypic analysis of these nucleoside-resistant variants by polymerase chain reaction (PCR) with primer pairs previously shown to correspond to mutations responsible for resistance to AZT was also carried out. A heterogeneity of genotypes was observed, with known mutations at pol codons 70 and 215 occurring in most of the AZT-resistant variants generated from either HIV-IIIB or clinical strain 187. However, mutations in codons 67 and 219 were less frequently detected, and none of these changes were observed in each of four variants resistant to ddI. Cloning and sequencing studies of the reverse transcriptase coding region of two of the isolates were also performed and confirmed the PCR data that had been obtained. In addition to previously described mutation sites responsible for resistance to AZT, an HIV-IIIB-resistant variant was shown to be mutated at positions 108 (Val----Ala) and 135 (Ile----Thr), while a resistant variant of strain 187 was mutated at positions 50 (Ile----Val) and 135 (Ile----Val).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
May 1992, Antiviral research,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
May 1994, Antimicrobial agents and chemotherapy,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
January 1989, Antimicrobial agents and chemotherapy,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
April 1994, Antimicrobial agents and chemotherapy,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
January 1991, Journal of virology,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
June 1990, Antimicrobial agents and chemotherapy,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
January 1993, Antimicrobial agents and chemotherapy,
Q Gao, and Z X Gu, and M A Parniak, and X G Li, and M A Wainberg
December 1988, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!