Stenotrophomonas maltophilia as a part of normal oral bacterial flora in captive snakes and its susceptibility to antibiotics. 2007

Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
Department of Microbiology, University Hospital, Hnevotínská 3, 775 15 Olomouc, Czech Republic. hejnar@fnol.cz

Only little is known about normal oral bacterial flora in captive snakes containing Stenotrophomonas maltophilia. This microbe has been reported as a causative agent of numerous infections in reptiles. Therefore, the goal of the study was to detect its presence in the mouths of a significant number of healthy captive snakes and determining its susceptibility to antibiotics at 30 and 37 degrees C. The isolates were obtained in 1999-2005 from mouth swabs of 115 snakes of 12 genera and 22 species-most often Elaphe guttata (24 individuals; 20.9%). Susceptibility to 24 antibiotics was tested by the microdilution method. The microbe was demonstrated in 34 (29.6%) individuals. Overall, 47 strains of S. maltophilia were acquired. Evaluation using PFGE profiles and antibiograms resulted in confirmation of one strain of S. maltophilia in 23 (20.0%) individuals, two strains in nine (7.8%) and three in two (1.8%) snakes. All tested antibiotics were more effective at 37 degrees C, with the partial exception of cotrimoxazole and cefoperazone/sulbactam. At a temperature of 37 degrees C, the lowest frequency of resistance to levofloxacin (no resistant strains), cotrimoxazole and ofloxacin (97.9% of susceptible strains) was recorded. At 30 degrees C, the most active agents were cotrimoxazole (97.9% of susceptible strains), levofloxacin (91.5%) and ofloxacin (85.1%). In conclusion, S. maltophilia is present in the mouths of about one third of healthy captive snakes, showing good susceptibility to cotrimoxazole, some fluoroquinolones and aminoglycosides. The antibiotics (particularly aminoglycosides) are more effective at 37 degrees C.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012911 Snakes Limbless REPTILES of the suborder Serpentes. Serpentes,Ophidia,Snake
D016521 Electrophoresis, Gel, Pulsed-Field Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length. Electrophoresis, Gel, Pulsed-Field Gradient,Gel Electrophoresis, Pulsed-Field,Contour-Clamped Homogeneous-Field Gel Electrophoresis,Electrophoresis, Gel, Pulsed Field,Electrophoresis, Pulsed Field Gel,Field Inversion Gel Electrophoresis,Orthogonal Field Alternation Gel Electrophoresis,Orthogonal-Field Alternation-Gel Electrophoresis,Pulsed Field Gradient Gel Electrophoresis,Pulsed-Field Gel Electrophoresis,Pulsed-Field Gradient Gel Electrophoresis,Alternation-Gel Electrophoresis, Orthogonal-Field,Contour Clamped Homogeneous Field Gel Electrophoresis,Electrophoresis, Orthogonal-Field Alternation-Gel,Electrophoresis, Pulsed-Field Gel,Gel Electrophoresis, Pulsed Field,Pulsed Field Gel Electrophoresis
D020615 Stenotrophomonas maltophilia A species of STENOTROPHOMONAS, formerly called Xanthomonas maltophilia, which reduces nitrate. It is a cause of hospital-acquired ocular and lung infections, especially in those patients with cystic fibrosis and those who are immunosuppressed. Xanthomonas maltophilia,Pseudomonas maltophilia

Related Publications

Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
January 2010, Folia microbiologica,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
September 2001, The Onderstepoort journal of veterinary research,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
May 1981, Journal of clinical microbiology,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
December 1981, Journal of the American Veterinary Medical Association,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
July 1997, The Journal of antimicrobial chemotherapy,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
December 2014, Investigative ophthalmology & visual science,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
January 2004, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
August 2021, Journal of clinical microbiology,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
January 2001, Folia microbiologica,
Petr Hejnar, and Jan Bardon, and Pavel Sauer, and Milan Kolár
March 1976, Infection and immunity,
Copied contents to your clipboard!