Cyclic AMP-dependent protein kinases and binding sites for cyclic AMP in rat erythrocytes. 1975

K Quiring, and G Kaiser, and D Gauger, and D Palm

In red cell preparations from reticulocyte-poor (untreated animals; approximately 2% reticulocytes) and reticulocyte-rich blood (animals pretreated with acetylphenylhydrazide; approximately 60% reticulocytes) of rats, cAMP binding sites and cAMP-dependent protein kinase activities were determined. High affinity binding sites for cAMP were present both in membrane and cytoplasmic preparations; while the apparent binding constants determined in both cell fractions (approximately 3 x 10(-9) M for membrane, approximately 2 x 10(-8) M for cytoplasmic fractions) were independent of the reticulocyte content of the preparations, the respective numbers of sites were about twice as high in the reticulocyte-rich as in the reticulocyte-poor preparations. In membrane preparations, significant cAMP-dependent protein kinase activity could be detected only in membrane fractions from reticulocyte-rich blood which were considerably contaminated by intracellular components ("haemoglobin-containing membranes') while in washed ("haemoglobin-free') membranes no cAMP-dependent protein kinase activity was found. In cytoplasmic preparations both from reticulocyte-poor and reticulocyte-rich blood, two different protein kinases, a low and a high Ka enzyme, were tentatively differentiated by kinetic data; the apparent activation constant for the high Ka enzyme (approximately less than 5 x 10(-8) M) was in the concentration range of the binding constants determined on cytoplasmic preparations. The activity of the high Ka protein kinase was several fold higher in reticulocyte-rich than in reticulocyte-poor cytoplasmic fractions, while the activity of the low Ka enzyme was obviously independent of the reticulocyte content. From the results obtained, it is concluded that in premature rat erythrocytes, membrane protein(s) may serve as protein substrates for cAMP-dependent protein kinase(s) located in the cytoplasm. This assumption was supported by experiments with intact erythrocytes (prelabelled with inorganic 32P-phosphate) from reticulocyte-rich blood: isoprenaline, theophylline, and also dibutyryl-cAMP significantly increased phosphorylation of membrane protein of these cells. From the results presented (and others previously reported) it becomes evident that only premature rat erythrocytes, i.e. reticulocytes, are equipped with a beta-adrenergic receptor-effector system consisting of a beta-adrenergically stimulated adenyl cyclase and cAMP-dependent protein kinase(s). Obviously, the adrenergic receptor system and also part of the effector system is lost during the process of red cell maturation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

K Quiring, and G Kaiser, and D Gauger, and D Palm
January 1981, Advances in cyclic nucleotide research,
K Quiring, and G Kaiser, and D Gauger, and D Palm
February 1987, The Journal of biological chemistry,
K Quiring, and G Kaiser, and D Gauger, and D Palm
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
K Quiring, and G Kaiser, and D Gauger, and D Palm
January 1981, The International journal of biochemistry,
K Quiring, and G Kaiser, and D Gauger, and D Palm
May 1978, National Cancer Institute monograph,
K Quiring, and G Kaiser, and D Gauger, and D Palm
January 1980, Biochemical and biophysical research communications,
K Quiring, and G Kaiser, and D Gauger, and D Palm
August 1989, European journal of pharmacology,
K Quiring, and G Kaiser, and D Gauger, and D Palm
February 1980, Research communications in chemical pathology and pharmacology,
K Quiring, and G Kaiser, and D Gauger, and D Palm
January 1974, Methods in enzymology,
Copied contents to your clipboard!