Identification of regulatory elements by gene family footprinting and in vivo analysis. 2007

David F Fischer, and Claude Backendorf
Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

Gene families of recently duplicated but subsequently diverged genes provide an unique opportunity for comparative analysis of regulatory elements. We have studied the human SPRR gene family of small proline rich proteins involved in barrier function of stratified squamous epithelia. These genes are all expressed in normal human keratinocytes, but respond differently to environmental insults. Comparisons of the functional promoter regions allows the rapid identification of both conserved and of novel regulatory elements that appeared after gene duplication. Competitive electrophoretic mobility shift assays can be used to confirm their presence. Here we show the power of gene family footprinting by the identification of two novel elements in the SPRR3 promoter, not present in SPRR1A and SPRR2A. One of these elements binds a protein similar to GAAP-1, a pro-apoptotic activator of IRF-1 and p53. In vivo analysis shows that this element functions as an inhibitor of SPRR3 transcription. The second novel element functions as an activator of promoter activity and is characterized by its A/T rich sequence. The latter interacting protein indeed binds through contacts in the minor groove, and strikingly, depends on the presence of calcium for DNA interaction.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D050436 Regulatory Elements, Transcriptional Nucleotide sequences of a gene that are involved in the regulation of GENETIC TRANSCRIPTION. Regulatory Element, Transcriptional,Transcriptional Regulatory Elements,Element, Transcriptional Regulatory,Elements, Transcriptional Regulatory,Transcriptional Regulatory Element
D055232 Proline-Rich Protein Domains Protein domains that are enriched in PROLINE. The cyclical nature of proline causes the peptide bonds it forms to have a limited degree of conformational mobility. Therefore the presence of multiple prolines in close proximity to each other can convey a distinct conformational arrangement to a peptide chain. Proline-Rich Peptide Domains,Domain, Proline-Rich Peptide,Domain, Proline-Rich Protein,Domains, Proline-Rich Peptide,Domains, Proline-Rich Protein,Peptide Domain, Proline-Rich,Peptide Domains, Proline-Rich,Proline Rich Peptide Domains,Proline Rich Protein Domains,Proline-Rich Peptide Domain,Proline-Rich Protein Domain,Protein Domain, Proline-Rich,Protein Domains, Proline-Rich
D018983 DNA Footprinting A method for determining the sequence specificity of DNA-binding proteins. DNA footprinting utilizes a DNA damaging agent (either a chemical reagent or a nuclease) which cleaves DNA at every base pair. DNA cleavage is inhibited where the ligand binds to DNA. (from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Footprints, DNA,DNA Footprint,DNA Footprintings,DNA Footprints,Footprint, DNA,Footprinting, DNA,Footprintings, DNA

Related Publications

David F Fischer, and Claude Backendorf
June 1997, American journal of human genetics,
David F Fischer, and Claude Backendorf
January 2015, Cold Spring Harbor protocols,
David F Fischer, and Claude Backendorf
May 2002, Genome research,
David F Fischer, and Claude Backendorf
January 2003, Journal of biology,
David F Fischer, and Claude Backendorf
July 2010, Molecular biotechnology,
David F Fischer, and Claude Backendorf
January 2014, Nucleic acids research,
Copied contents to your clipboard!