Nonresonance Raman spectroscopy has been used to investigate the protein-flavin interactions of the oxidized and anionic semiquinone states of the electron-transfer flavoprotein from the methylotrophic bacteria W3A1 (wETF) in solution. Several unique features of oxidized wETF were revealed from the Raman data. The unusually high frequency of the Raman band for the C(4)=O of the flavin suggests that hydrogen-bonding interactions with the C(4)O are very weak or nonexistent in wETF. In contrast, hydrogen bonding with the C(2)=O is one of the strongest among the flavoproteins investigated thus far. According to the crystal structure, the side-chain hydroxyl group of alphaSer254 serves as a hydrogen bond donor to the N(5) atom in the oxidized flavin cofactor in wETF. The replacement of alphaSer254 by cysteine by site-directed mutagenesis resulted in shifts in N(5)-relevant Raman bands in both the oxidized and anionic semiquinone states of the protein. These results confirm the presence of the hydrogen-bonding interaction at N(5) that is evident in the crystal structure of the oxidized protein and that it persists in the one-electron reduced state. The data suggest that these bands can serve as useful Raman markers for the N(5) interactions in both oxidation states of flavoproteins. The wETF displays unusually low frequencies of flavin ring I (o-xylene ring) relevant bands, which suggests a ring I microenvironment different from most of the other flavoproteins. As indicated by Raman data, the alphaS254C mutation changed the environment of ring I, perhaps as the consequence of changes in the mobility of the FAD domain of wETF. These unusual flavin-protein interactions may be associated with the unique redox properties of wETF.