Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. 1992

J T Tsay, and C O Rock, and S Jackowski
Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

Thiolactomycin [(4S)(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene- 4-thiolide] (TLM) is a unique antibiotic structure that inhibits dissociated type II fatty acid synthase systems but not the multifunctional type I fatty acid synthases found in mammals. We screened an Escherichia coli genomic library for recombinant plasmids that impart TLM resistance to a TLM-sensitive strain of E. coli K-12. Nine independent plasmids were isolated, and all possessed a functional beta-ketoacyl-acyl carrier protein synthase I gene (fabB) based on their restriction enzyme maps and complementation of the temperature-sensitive growth of a fabB15(Ts) mutant. A plasmid (pJTB3) was constructed that contained only the fabB open reading frame. This plasmid conferred TLM resistance, complemented the fabB(Ts) mutation, and directed the overproduction of synthase I activity. TLM selectively inhibited unsaturated fatty acid synthesis in vivo; however, synthase I was not the only TLM target, since supplementation with oleate to circumvent the cellular requirement for an active synthase I did not confer TLM resistance. Overproduction of the FabB protein resulted in TLM-resistant fatty acid biosynthesis in vivo and in vitro. These data show that beta-ketoacyl-acyl carrier protein synthase I is a major target for TLM and that increased expression of this condensing enzyme is one mechanism for acquiring TLM resistance. However, extracts from a TLM-resistant mutant (strain CDM5) contained normal levels of TLM-sensitive synthase I activity, illustrating that there are other mechanisms of TLM resistance.

UI MeSH Term Description Entries
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D013876 Thiophenes A monocyclic heteroarene furan in which the oxygen atom is replaced by a sulfur. Thiophene
D064429 Fatty Acid Synthases Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives. Fatty Acid Synthase,Fatty Acid Synthetases,Acid Synthase, Fatty,Acid Synthases, Fatty,Synthase, Fatty Acid,Synthetases, Fatty Acid

Related Publications

J T Tsay, and C O Rock, and S Jackowski
February 1983, The Journal of biological chemistry,
J T Tsay, and C O Rock, and S Jackowski
May 1996, The Journal of biological chemistry,
J T Tsay, and C O Rock, and S Jackowski
December 1969, The Journal of biological chemistry,
J T Tsay, and C O Rock, and S Jackowski
October 1970, The Journal of biological chemistry,
J T Tsay, and C O Rock, and S Jackowski
February 2010, The Journal of biological chemistry,
J T Tsay, and C O Rock, and S Jackowski
April 2000, Biochemical and biophysical research communications,
J T Tsay, and C O Rock, and S Jackowski
July 1975, The Journal of biological chemistry,
J T Tsay, and C O Rock, and S Jackowski
October 1999, FEBS letters,
Copied contents to your clipboard!