Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. 1992

A Franzusoff, and E Lauzé, and K E Howell
Department of Cellular and Structural Biology, University of Colorado Medical School, Denver 80262.

The transport of proteins destined for post-endoplasmic reticulum locations in the secretory pathway is mediated by small vesicular carriers. Transport vesicles have been generated in cell-free assays from the yeast Saccharomyces cerevisiae, and mammalian systems. Yeast genes encoding cytosolic components that participate in vesicular traffic were first identified from the collection of conditional-lethal sec-(secretory) mutants. Mutations in the yeast SEC7 gene disrupt protein transport in the secretory pathway at the nonpermissive temperature. The SEC7 gene product is a phosphoprotein of relative molecular mass 230,000 that functions from the cytoplasmic aspect of intracellular membranes. We report that in a yeast cell-free transport assay, the introduction of antibodies to Sec7 protein (Sec7p) results in the accumulation of transport vesicles. These vesicles are retrieved with Sec7p-specific antibodies by immuno-isolation for biochemical and electron microscopic characterization. Sec7p on the surface of the accumulated transport vesicles, in combination with previous genetic and biochemical studies, implicate Sec7p as part of a (non-clathrin) vesicle coat. This Sec7p-containing coat structure is proposed to be essential for vesicle budding at multiple stages in the yeast secretory pathway.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000072235 Mating Factor A protein also known as pheromone mating factor that occurs on the surfaces of organisms such as yeast and fungi. Mating Hormone,Pheromone a-Factor,Pheromone alpha-Factor,Sexual Agglutination Factor,alpha-Agglutinin (Fungal),alpha-Factor (Fungal),alpha-Mating Factor,Agglutination Factor, Sexual,Factor, Mating,Factor, Sexual Agglutination,Factor, alpha-Mating,Hormone, Mating,Pheromone a Factor,Pheromone alpha Factor,a-Factor, Pheromone,alpha Mating Factor,alpha-Factor, Pheromone
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

A Franzusoff, and E Lauzé, and K E Howell
August 1997, Analytical biochemistry,
A Franzusoff, and E Lauzé, and K E Howell
November 1999, Journal of cell science,
A Franzusoff, and E Lauzé, and K E Howell
September 1998, The Biochemical journal,
A Franzusoff, and E Lauzé, and K E Howell
October 1997, European journal of cell biology,
A Franzusoff, and E Lauzé, and K E Howell
November 1987, Analytical biochemistry,
A Franzusoff, and E Lauzé, and K E Howell
March 2002, Molecular biology of the cell,
A Franzusoff, and E Lauzé, and K E Howell
January 1983, Methods in enzymology,
A Franzusoff, and E Lauzé, and K E Howell
March 1985, Planta,
A Franzusoff, and E Lauzé, and K E Howell
July 1987, The Journal of cell biology,
A Franzusoff, and E Lauzé, and K E Howell
February 1999, Experimental cell research,
Copied contents to your clipboard!