Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. 1992

D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
Cardiovascular Research Institute, University of California, San Francisco 94143-0911.

Arachidonate 15-lipoxygenase (arachidonate:oxygen 15-oxidoreductase, EC 1.13.11.33) is a lipid-peroxidating enzyme that is implicated in oxidizing low density lipoprotein to its atherogenic form. Monocyte/macrophage 15-lipoxygenase is present in human atherosclerotic lesions. To pursue a basis for induction of the enzyme, which is not present in blood monocytes, the ability of relevant cytokines to regulate its expression was investigated. Interleukin 4 (IL-4), among 16 factors tested, specifically induced 15-lipoxygenase mRNA and protein in cultured human monocytes. Interferon gamma and hydrocortisone inhibited this induction. High-performance liquid chromatography analysis of lipid extracts from IL-4-treated monocytes detected 15-lipoxygenase products esterified to the cellular membrane lipids, indicating enzymatic action on endogenous substrates. Stimulation of IL-4-treated monocytes with calcium ionophore or opsonized zymosan A enhanced the formation of 15-lipoxygenase products. These data identify IL-4 and interferon gamma as physiological regulators of lipoxygenase expression and suggest an important link between 15-lipoxygenase function and the immune/inflammatory response in atherosclerosis as well as other diseases.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D001093 Arachidonate 15-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 15-hydroperoxyarachidonate (15-HPETE) which is rapidly converted to 15-hydroxy-5,8,11,13-eicosatetraenoate (15-HETE). The 15-hydroperoxides are preferentially formed in NEUTROPHILS and LYMPHOCYTES. 15-Lipoxygenase,Arachidonic Acid 15-Lipoxygenase,15 Lipoxygenase,15-Lipoxygenase, Arachidonate,15-Lipoxygenase, Arachidonic Acid,Arachidonate 15 Lipoxygenase,Arachidonic Acid 15 Lipoxygenase
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
January 1997, Advances in experimental medicine and biology,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
November 2010, Journal of immunology (Baltimore, Md. : 1950),
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
September 2011, Journal of neuroimmunology,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
March 2004, The Journal of biological chemistry,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
June 2008, The American journal of pathology,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
January 1989, Transactions of the Association of American Physicians,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
April 1997, Acta orthopaedica Scandinavica,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
May 2012, Toxicology,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
April 1999, Proceedings of the National Academy of Sciences of the United States of America,
D J Conrad, and H Kuhn, and M Mulkins, and E Highland, and E Sigal
January 1990, Biomedica biochimica acta,
Copied contents to your clipboard!